bla*_*bug 10 python convolution deep-learning keras
我在CNN上使用二进制分类器.我有两个类别"我"和"其他".我有大约250张自己的图像和500张其他图像(随机面部数据库).我目前的图层实现非常简单
self.model.add(Conv2D(128, (2, 2), padding='same',
input_shape=dataset.X_train.shape[1:]))
self.model.add(Activation('relu'))
self.model.add(MaxPooling2D(pool_size=(2, 2)))
self.model.add(Dropout(0.25))
self.model.add(Conv2D(64, (2, 2), padding='same'))
self.model.add(Activation('relu'))
self.model.add(MaxPooling2D(pool_size=(2, 2)))
self.model.add(Dropout(0.25))
self.model.add(Conv2D(32, (1, 1), padding='same'))
self.model.add(Activation('relu'))
self.model.add(MaxPooling2D(pool_size=(2, 2)))
self.model.add(Dropout(0.5))
self.model.add(Dense(512))
self.model.add(Activation('relu'))
self.model.add(Dropout(0.25))
self.model.add(Dense(2)) # for two classes
self.model.add(Activation('softmax'))
Run Code Online (Sandbox Code Playgroud)
我的问题是,当我使用这个网络预测面孔时,它总是将任何面部识别为我的面孔.我已经裁剪了面部,应用了gabor过滤器,但没有任何作用.任何建议将不胜感激.
随机面的预测结果:[KK代表我的脸]概率总是超过97%:
KK identified!
1/1 [==============================] - 0s
[[ 0.9741978 0.0258022]]
1/1 [==============================] - 0s
KK identified!
1/1 [==============================] - 0s
[[ 0.9897241 0.01027592]]
1/1 [==============================] - 0s
Run Code Online (Sandbox Code Playgroud)
我的图像预测结果:[KK代表我的脸]概率总是超过99%:
KK identified!
1/1 [==============================] - 0s
[[ 0.99639165 0.00360837]]
1/1 [==============================] - 0s
KK identified!
1/1 [==============================] - 0s
[[ 0.99527925 0.00472075]]
1/1 [==============================] - 0s
Run Code Online (Sandbox Code Playgroud)
培训代码
def get_data(self, img_rows=IMAGE_SIZE, img_cols=IMAGE_SIZE, img_channels=3, nb_classes=2):
images, labels = fetch_data('./data/')
labels = np.reshape(labels, [-1])
X_train, X_test, y_train, y_test = \
train_test_split(images, labels, test_size=0.3, random_state=random.randint(0, 100))
X_valid, X_test, y_valid, y_test = \
train_test_split(images, labels, test_size=0.3, random_state=random.randint(0, 100))
#train_test_split(images, labels, test_size=0.3, random_state=np.random.seed(15))
if K.image_dim_ordering() == 'th':
X_train = X_train.reshape(X_train.shape[0], 3, img_rows, img_cols)
X_valid = X_valid.reshape(X_valid.shape[0], 3, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 3, img_rows, img_cols)
# input_shape = (3, img_rows, img_cols)
else:
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 3)
X_valid = X_valid.reshape(X_valid.shape[0], img_rows, img_cols, 3)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 3)
# input_shape = (img_rows, img_cols, 3)
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_valid = np_utils.to_categorical(y_valid, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
X_train = X_train.astype('float32')
X_valid = X_valid.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_valid /= 255
X_test /= 255
self.X_train = X_train
self.X_valid = X_valid
self.X_test = X_test
self.Y_train = Y_train
self.Y_valid = Y_valid
self.Y_test = Y_test
def train_network(self, dataset, batch_size=32, nb_epoch=40, data_augmentation=True):
sgd = SGD(lr=0.003, decay=0.0000001, momentum=0.9, nesterov=True)
# adam = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0001)
self.model.compile(loss='binary_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
if not data_augmentation:
processed_data = self.model.fit(dataset.X_train, dataset.Y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
validation_data=(dataset.X_valid, dataset.Y_valid),
shuffle=True)
else:
datagenerator = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
vertical_flip=False)
datagenerator.fit(dataset.X_train)
processed_data = self.model.fit_generator(datagen.flow(dataset.X_train, dataset.Y_train, batch_size=batch_size, shuffle=True),
samples_per_epoch=dataset.X_train.shape[0], nb_epoch=nb_epoch, validation_data=(dataset.X_valid, dataset.Y_valid))
Run Code Online (Sandbox Code Playgroud)
谢谢
[更新:6月11日]
图层
def build_model(self, dataset, nb_classes=2):
self.model = Sequential()
self.model.add(Conv2D(32, (3, 3), padding='same', input_shape=dataset.X_train.shape[1:]))
self.model.add(Activation('relu'))
self.model.add(Conv2D(32, (3, 3)))
self.model.add(Activation('relu'))
self.model.add(MaxPooling2D(pool_size=(2, 2)))
self.model.add(Dropout(0.5))
self.model.add(Conv2D(16, (3, 3), padding='same'))
self.model.add(Activation('relu'))
self.model.add(Conv2D(16, (3, 3)))
self.model.add(Activation('relu'))
self.model.add(MaxPooling2D(pool_size=(2, 2)))
self.model.add(Dropout(0.5))
self.model.add(Flatten())
self.model.add(Dense(512))
self.model.add(Activation('relu'))
self.model.add(Dropout(0.5))
self.model.add(Dense(nb_classes))
self.model.add(Activation('softmax'))
self.model.summary()
Run Code Online (Sandbox Code Playgroud)
数据增加
# this will do preprocessing and realtime data augmentation
datagen = ImageDataGenerator(
featurewise_center=True, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
# rescale=1. / 255,
# shear_range=0.2,
# zoom_range=0.2,
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
datagen.fit(dataset.X_train)
checkpoint = ModelCheckpoint(self.FILE_PATH, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callback_list = [checkpoint]
# fit the model on the batches generated by datagen.flow()
train_generator = datagen.flow(dataset.X_train, dataset.Y_train, batch_size=batch_size, shuffle=True)
history = self.model.fit_generator(train_generator,
samples_per_epoch=dataset.X_train.shape[0],
nb_epoch=nb_epoch,
validation_data=(dataset.X_valid, dataset.Y_valid),
callbacks=callback_list)
Run Code Online (Sandbox Code Playgroud)
数据集
class DataSet(object):
def __init__(self):
self.X_train = None
self.X_valid = None
self.X_test = None
self.Y_train = None
self.Y_valid = None
self.Y_test = None
# support only binary classification for now, thus 2 class limit
def get_data(self, img_rows=IMAGE_SIZE, img_cols=IMAGE_SIZE, img_channels=3, nb_classes=2):
images, labels = fetch_data('./data/')
labels = np.reshape(labels, [-1])
X_train, X_test, y_train, y_test = \
train_test_split(images, labels, test_size=0.2, random_state=random.randint(0, 100))
X_valid, X_test, y_valid, y_test = \
train_test_split(images, labels, test_size=0.2, random_state=random.randint(0, 100))
if K.image_dim_ordering() == 'th':
X_train = X_train.reshape(X_train.shape[0], 3, img_rows, img_cols)
X_valid = X_valid.reshape(X_valid.shape[0], 3, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 3, img_rows, img_cols)
else:
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 3)
X_valid = X_valid.reshape(X_valid.shape[0], img_rows, img_cols, 3)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 3)
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_valid = np_utils.to_categorical(y_valid, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
X_train = X_train.astype('float32')
X_valid = X_valid.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_valid /= 255
X_test /= 255
self.X_train = X_train
self.X_valid = X_valid
self.X_test = X_test
self.Y_train = Y_train
self.Y_valid = Y_valid
self.Y_test = Y_test
Run Code Online (Sandbox Code Playgroud)
结果一点也不奇怪。网络从来没有知道是什么让你的脸与众不同,但只记得是什么让 500 集与你的不同。一旦你展示了一张新面孔,它就没有它的“记忆”,因此将它解释为你的,只是因为 500 张面孔中出现的特征都没有出现在第 501 张面孔中。
如何解决这个问题的一些想法:
对我最后一点假设的一个很好的测试是可视化隐藏层中的激活,尤其是第一个隐藏层。我有一种感觉,你的网络会激活一些不相关的特征(或者更确切地说 - 噪音),而不是“人类特征”(比如眼睛、发型)。
[添加更多代码后编辑]
我仍然认为在第一个隐藏层中使用例如 16 或 32 个过滤器应该是首先要检查的。看看你的脸。你能发现 128 个“特征”吗?除非你有一些严重的痤疮,否则我不这么认为。
对于这样的分类任务,您没有足够的数据(250 + 500 个样本)。A 类(你)与 B 类(其他人)之间的 50/100 关系是一个很大的偏见。至少你应该在训练时尝试用 .fit() 函数中的 class_weight 参数来平衡它。
\n\n更好的方法是从 Keras 应用程序重新训练现有的 ConvNet,例如 VGG16 或 Inception: https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
\n\n您可以轻松地通过数据增强来增加样本数量(请参阅此处的 ImageDataGenerator https://keras.io/preprocessing/image/)。
\n\n为了分析您的代码,您需要展示如何分割数据以及如何训练数据。正确的训练方法是将训练数据和验证数据分开,然后对另一组单独的测试数据进行评估,这些数据是网络从未见过的,并且您还没有使用它来优化您的超参数。
\n\n据我从您关于训练/测试/验证分割的评论中可以看出:您是否从同一组图像中分割两次?这可能会在验证和测试数据中为您提供相同的图像,这反过来会导致错误的结果。
\n\n查看您的培训代码会很有帮助。
\n| 归档时间: |
|
| 查看次数: |
407 次 |
| 最近记录: |