Xin*_*ang 11 deep-learning torch caffe tensorflow mxnet
由于Adam Optimizer保持一对平均值,如渐变的均值/方差,我想知道它应该如何正确处理重量衰减.我已经看到了两种实现它的方法.
仅根据客观损失,每个小批量明确的衰减权重更新梯度的均值/方差.(以下代码摘自https://github.com/dmlc/mxnet/blob/v0.7.0/python/mxnet/optimizer.py)
weight[:] -= lr*mean/(sqrt(variance) + self.epsilon)
wd = self._get_wd(index)
if wd > 0.:
weight[:] -= (lr * wd) * weight
Run Code Online (Sandbox Code Playgroud)根据客观损失+正则化损失更新梯度的均值/方差,并像往常一样更新权重.(以下代码摘自https://github.com/dmlc/mxnet/blob/master/src/operator/optimizer_op-inl.h#L210)
grad = scalar<DType>(param.rescale_grad) * grad +
scalar<DType>(param.wd) * weight;
// stuff
Assign(out, req[0],
weight -
scalar<DType>(param.lr) * mean /
(F<square_root>(var) + scalar<DType>(param.epsilon)));
Run Code Online (Sandbox Code Playgroud)这两种方法有时在训练结果上显示出显着差异.而我实际上认为第一个更有意义(并且发现它会不时地提供更好的结果).Caffe和旧版本的mxnet遵循第一种方法,而火炬,tensorflow和新版本的mxnet遵循第二种方法.
真的很感谢你的帮助!
Luc*_*asB 12
编辑:也看到这个PR刚刚合并到TF.
当使用纯SGD(没有动量),为优化器,重量衰变是一回事添加L2-正则化项的损失.使用任何其他优化器时,情况并非如此.
重量衰减(不知道如何在这里使用TeX,请原谅我的伪符号):
w[t+1] = w[t] - learning_rate * dw - weight_decay * w
Run Code Online (Sandbox Code Playgroud)
L2正则:
loss = actual_loss + lambda * 1/2 sum(||w||_2 for w in network_params)
Run Code Online (Sandbox Code Playgroud)
计算L2正则化中的额外项的梯度给出lambda * w并因此将其插入SGD更新方程中
dloss_dw = dactual_loss_dw + lambda * w
w[t+1] = w[t] - learning_rate * dw
Run Code Online (Sandbox Code Playgroud)
与重量衰减相同,但lambda与重量相混合learning_rate.任何其他优化器,即使是具有动量的SGD,也会为L2正则化提供不同的权重衰减更新规则!有关更多详细信息,请参阅" 修复Adam中的重量衰减 "一文.(编辑:AFAIK,这一1987年的Hinton论文引入了"权重衰减",字面意思是"每次权重更新,其数量也减少0.4%",第10页)
话虽如此,TensorFlow似乎还没有支持"适当"的体重衰减.讨论它有一些问题,特别是因为上面的论文.
实现它的一种可能方法是编写一个op,在每个优化器步骤之后手动执行衰减步骤.一种不同的方式,就是我目前正在做的,就是使用额外的SGD优化器来减轻重量,并将其"附加"到你的身上train_op.不过,这些都只是粗略的解决方案.我目前的代码:
# In the network definition:
with arg_scope([layers.conv2d, layers.dense],
weights_regularizer=layers.l2_regularizer(weight_decay)):
# define the network.
loss = # compute the actual loss of your problem.
train_op = optimizer.minimize(loss, global_step=global_step)
if args.weight_decay not in (None, 0):
with tf.control_dependencies([train_op]):
sgd = tf.train.GradientDescentOptimizer(learning_rate=1.0)
train_op = sgd.minimize(tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)))
Run Code Online (Sandbox Code Playgroud)
这有点使用了TensorFlow提供的簿记.注意,arg_scope将每个层的L2正则化项附加到REGULARIZATION_LOSSES图形密钥,然后我使用SGD对其进行求和和优化,如上所示,SGD对应于实际的权重衰减.
希望有所帮助,如果有人为此获得更好的代码片段,或者TensorFlow更好地实现它(即在优化器中),请分享.
我遇到了同样的问题。我认为我从这里获得的这段代码对您有用。它通过继承自 来实现权重衰减 adam 优化器tf.train.Optimizer。这是我发现的最干净的解决方案:
class AdamWeightDecayOptimizer(tf.train.Optimizer):
"""A basic Adam optimizer that includes "correct" L2 weight decay."""
def __init__(self,
learning_rate,
weight_decay_rate=0.0,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=None,
name="AdamWeightDecayOptimizer"):
"""Constructs a AdamWeightDecayOptimizer."""
super(AdamWeightDecayOptimizer, self).__init__(False, name)
self.learning_rate = learning_rate
self.weight_decay_rate = weight_decay_rate
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.exclude_from_weight_decay = exclude_from_weight_decay
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""See base class."""
assignments = []
for (grad, param) in grads_and_vars:
if grad is None or param is None:
continue
param_name = self._get_variable_name(param.name)
m = tf.get_variable(
name=param_name + "/adam_m",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
v = tf.get_variable(
name=param_name + "/adam_v",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
# Standard Adam update.
next_m = (
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
next_v = (
tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
tf.square(grad)))
update = next_m / (tf.sqrt(next_v) + self.epsilon)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want ot decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if self._do_use_weight_decay(param_name):
update += self.weight_decay_rate * param
update_with_lr = self.learning_rate * update
next_param = param - update_with_lr
assignments.extend(
[param.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
return tf.group(*assignments, name=name)
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name
Run Code Online (Sandbox Code Playgroud)
您可以通过以下方式使用它(我做了一些更改以使其在更一般的上下文中有用),该函数将返回一个train_op可以在会话中使用的:
def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps):
"""Creates an optimizer training op."""
global_step = tf.train.get_or_create_global_step()
learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
# Implements linear decay of the learning rate.
learning_rate = tf.train.polynomial_decay(
learning_rate,
global_step,
num_train_steps,
end_learning_rate=0.0,
power=1.0,
cycle=False)
# Implements linear warmup. I.e., if global_step < num_warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
if num_warmup_steps:
global_steps_int = tf.cast(global_step, tf.int32)
warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
global_steps_float = tf.cast(global_steps_int, tf.float32)
warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
warmup_percent_done = global_steps_float / warmup_steps_float
warmup_learning_rate = init_lr * warmup_percent_done
is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
learning_rate = (
(1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
# It is recommended that you use this optimizer for fine tuning, since this
# is how the model was trained (note that the Adam m/v variables are NOT
# loaded from init_checkpoint.)
optimizer = AdamWeightDecayOptimizer(
learning_rate=learning_rate,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6)
tvars = tf.trainable_variables()
grads = tf.gradients(loss, tvars)
# You can do clip gradients if you need in this step(in general it is not neccessary)
# (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
train_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=global_step)
# Normally the global step update is done inside of `apply_gradients`.
# However, `AdamWeightDecayOptimizer` doesn't do this. But if you use
# a different optimizer, you should probably take this line out.
new_global_step = global_step + 1
train_op = tf.group(train_op, [global_step.assign(new_global_step)])
return train_op
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
13106 次 |
| 最近记录: |