如此处所述,当测试条件ifelse(test, yes, no)
为时NA
,评估也是如此NA
.因此以下回报......
df <- data.frame(a = c(1, 1, NA, NA, NA ,NA),
b = c(NA, NA, 1, 1, NA, NA),
c = c(rep(NA, 4), 1, 1))
ifelse(df$a==1, "a==1",
ifelse(df$b==1, "b==1",
ifelse(df$c==1, "c==1", NA)))
#[1] "a==1" "a==1" NA NA NA NA
Run Code Online (Sandbox Code Playgroud)
......而不是期望的
#[1] "a==1" "a==1" "b==1" "b==1" "c==1" "c==1"
Run Code Online (Sandbox Code Playgroud)
正如Cath所建议的,我可以通过正式指定测试条件不应包含NA来规避这个问题:
ifelse(df$a==1 & !is.na(df$a), "a==1",
ifelse(df$b==1 & !is.na(df$b), "b==1",
ifelse(df$c==1 & !is.na(df$c), "c==1", NA)))
Run Code Online (Sandbox Code Playgroud)
然而,正如akrun所指出的,随着列数的增加,这种解决方案变得相当冗长.
解决方法是首先使用NA
data.frame中不存在的值替换所有s(例如,在这种情况下为2):
df_noNA <- data.frame(a = c(1, 1, 2, 2, 2 ,2),
b = c(2, 2, 1, 1, 2, 2),
c = c(rep(2, 4), 1, 1))
ifelse(df_noNA$a==1, "a==1",
ifelse(df_noNA$b==1, "b==1",
ifelse(df_noNA$c==1, "c==1", NA)))
#[1] "a==1" "a==1" "b==1" "b==1" "c==1" "c==1"
Run Code Online (Sandbox Code Playgroud)
但是,我想知道是否有更直接的方法ifelse
来忽略NAs?或者是以& !is.na
最直接的方式编写函数?
ignorena <- function(column) {
column ==1 & !is.na(column)
}
ifelse(ignorena(df$a), "a==1",
ifelse(ignorena(df$b), "b==1",
ifelse(ignorena(df$c), "c==1", NA)))
#[1] "a==1" "a==1" "b==1" "b==1" "c==1" "c==1"
Run Code Online (Sandbox Code Playgroud)
您可以使用%in%
而不是==
排序忽略NA
s.
ifelse(df$a %in% 1, "a==1",
ifelse(df$b %in% 1, "b==1",
ifelse(df$c %in% 1, "c==1", NA)))
Run Code Online (Sandbox Code Playgroud)
不幸的是,与原版相比,这并没有带来任何性能提升,而@ arkun的解决方案速度提高了约3倍.
solution_original <- function(){
ifelse(df$a==1 & !is.na(df$a), "a==1",
ifelse(df$b==1 & !is.na(df$b), "b==1",
ifelse(df$c==1 & !is.na(df$c), "c==1", NA)))
}
solution_akrun <- function(){
v1 <- names(df)[max.col(!is.na(df)) * NA^!rowSums(!is.na(df))]
i1 <- !is.na(v1)
v1[i1] <- paste0(v1[i1], "==1")
}
solution_mine <- function(x){
ifelse(df$a %in% 1, "a==1",
ifelse(df$b %in% 1, "b==1",
ifelse(df$c %in% 1, "c==1", NA)))
}
set.seed(1)
df <- data.frame(a = sample(c(1, rep(NA, 4)), 1e6, T),
b = sample(c(1, rep(NA, 4)), 1e6, T),
c = sample(c(1, rep(NA, 4)), 1e6, T))
microbenchmark::microbenchmark(
solution_original(),
solution_akrun(),
solution_mine()
)
## Unit: milliseconds
## expr min lq mean median uq max neval
## solution_original() 701.9413 839.3715 845.0720 853.1960 875.6151 1051.6659 100
## solution_akrun() 217.4129 242.5113 293.2987 253.2144 387.1598 564.3981 100
## solution_mine() 698.7628 845.0822 848.6717 858.7892 877.9676 1006.2872 100
Run Code Online (Sandbox Code Playgroud)
编辑
在@arkun的评论之后,我重新修改了基准并修改了声明.
dplyr::case_when
是级联ifelse
调用的便捷替代方案:
library(dplyr)
df <- data.frame(a = c(1, 1, NA, NA, NA ,NA),
b = c(NA, NA, 1, 1, NA, NA),
c = c(rep(NA, 4), 1, 1))
df %>% mutate(equals = case_when(a == 1 ~ 'a==1',
b == 1 ~ 'b==1',
c == 1 ~ 'c==1'))
#> a b c equals
#> 1 1 NA NA a==1
#> 2 1 NA NA a==1
#> 3 NA 1 NA b==1
#> 4 NA 1 NA b==1
#> 5 NA NA 1 c==1
#> 6 NA NA 1 c==1
Run Code Online (Sandbox Code Playgroud)
它像 一样级联ifelse
,所以如果第一个条件为真,即使第二个和第三个条件也为真,也会返回第一个结果。如果都不为真,则返回NA
:
set.seed(47)
df <- setNames(as.data.frame(matrix(sample(c(1, NA), 30, replace = TRUE), 10)), letters[1:3])
df %>% mutate(equals = case_when(a == 1 ~ 'a==1',
b == 1 ~ 'b==1',
c == 1 ~ 'c==1'))
#> a b c equals
#> 1 NA 1 1 b==1
#> 2 1 NA NA a==1
#> 3 NA 1 NA b==1
#> 4 NA NA 1 c==1
#> 5 NA NA NA <NA>
#> 6 NA NA 1 c==1
#> 7 1 1 1 a==1
#> 8 1 1 1 a==1
#> 9 NA 1 NA b==1
#> 10 NA 1 NA b==1
Run Code Online (Sandbox Code Playgroud)
另外它很快:
set.seed(47)
df <- setNames(as.data.frame(matrix(sample(c(1, NA), 3 * 1e5, replace = TRUE), ncol = 3)), letters[1:3])
microbenchmark::microbenchmark(
original = {
ifelse(df$a == 1 & !is.na(df$a), "a==1",
ifelse(df$b == 1 & !is.na(df$b), "b==1",
ifelse(df$c == 1 & !is.na(df$c), "c==1", NA)))},
akrun = {
v1 <- names(df)[max.col(!is.na(df)) * NA^!rowSums(!is.na(df))]
i1 <- !is.na(v1)
v1[i1] <- paste0(v1[i1], "==1")
},
amatsuo_net = {
ifelse(df$a %in% 1, "a==1",
ifelse(df$b %in% 1, "b==1",
ifelse(df$c %in% 1, "c==1", NA)))
},
alistaire = {
df %>% mutate(equals = case_when(a == 1 ~ 'a==1',
b == 1 ~ 'b==1',
c == 1 ~ 'c==1'))
}
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> original 81.19896 86.11843 110.93882 123.92463 128.58037 171.11026 100
#> akrun 27.50351 30.99127 38.98353 32.67991 34.64947 77.98958 100
#> amatsuo_net 83.75744 88.54095 109.22226 110.40066 129.02168 170.92911 100
#> alistaire 16.57426 18.91951 21.73293 19.29925 24.30350 33.83180 100
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1865 次 |
最近记录: |