Tensorflow:永远停留在sess.run中的分批转换

Vij*_*r J 2 python python-3.x tensorflow

我正在尝试分批训练我的模型,因为我找不到如何正确执行模型的任何示例。这是我所能做的,我的任务是找到如何在Tensorflow中逐批训练模型的方法。

queue=tf.FIFOQueue(capacity=50,dtypes=[tf.float32,tf.float32],shapes=[[10],[2]])
enqueue_op=queue.enqueue_many([X,Y])
dequeue_op=queue.dequeue()

qr=tf.train.QueueRunner(queue,[enqueue_op]*2)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    X_train_batch,y_train_batch=tf.train.batch(dequeue_op,batch_size=2)
    coord=tf.train.Coordinator()
    enqueue_threads=qr.create_threads(sess,coord,start=True)
    sess.run(tf.local_variables_initializer())
    for epoch in range(100):
        print("inside loop1")
        for iter in range(5):
            print("inside loop2")
            if coord.should_stop():
                break
            batch_x,batch_y=sess.run([X_train_batch,y_train_batch])
            print("after sess.run")
            print(batch_x.shape)
            _=sess.run(optimizer,feed_dict={x_place:batch_x,y_place:batch_y})
        coord.request_stop()
        coord.join(enqueue_threads)
Run Code Online (Sandbox Code Playgroud)

哪个输出,

inside loop1
inside loop2
Run Code Online (Sandbox Code Playgroud)

如您所见,当它运行该batch_x,batch_y=sess.run([X_train_batch,y_train_batch])行时,它将永远停滞不前。我不知道如何解决这个问题,或者这是逐批训练模型的正确方法吗?

Vij*_*r J 5

经过几个小时的搜索,我自己找到了解决方案。因此,我现在在下面回答我自己的问题。队列由后台线程填充,这些后台线程是在您调用时创建的。tf.train.start_queue_runners()如果不调用此方法,后台线程将不会启动,队列将保持为空,并且训练操作将无限期地等待输入。

FIX:tf.train.start_queue_runners(sess)在训练循环之前 调用。就像我在下面做的那样:

queue=tf.FIFOQueue(capacity=50,dtypes=[tf.float32,tf.float32],shapes=[[10],[2]])
enqueue_op=queue.enqueue_many([X,Y])
dequeue_op=queue.dequeue()

qr=tf.train.QueueRunner(queue,[enqueue_op]*2)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    X_train_batch,y_train_batch=tf.train.batch(dequeue_op,batch_size=2)
    coord=tf.train.Coordinator()
    enqueue_threads=qr.create_threads(sess,coord,start=True)
    tf.train.start_queue_runners(sess)
    for epoch in range(100):
        print("inside loop1")
        for iter in range(5):
            print("inside loop2")
            if coord.should_stop():
                break
            batch_x,batch_y=sess.run([X_train_batch,y_train_batch])
            print("after sess.run")
            print(batch_x.shape)
            _=sess.run(optimizer,feed_dict={x_place:batch_x,y_place:batch_y})
        coord.request_stop()
        coord.join(enqueue_threads)
Run Code Online (Sandbox Code Playgroud)