Tes*_*est 5 python rows collapse dataframe pandas
我跟随DF
col1 | col2 | col3 | col4 | col5 | col6
0 - | 15.0 | - | - | - | -
1 - | - | - | - | - | US
2 - | - | - | Large | - | -
3 ABC1 | - | - | - | - | -
4 - | - | 24RA | - | - | -
5 - | - | - | - | 345 | -
Run Code Online (Sandbox Code Playgroud)
我想按如下方式将行折叠为一行
output DF:
col1 | col2 | col3 | col4 | col5 | col6
0 ABC1 | 15.0 | 24RA | Large | 345 | US
Run Code Online (Sandbox Code Playgroud)
我不想迭代列,但想使用pandas来实现这一目标.
选项0
超级简单
pd.concat([pd.Series(df[c].dropna().values, name=c) for c in df], axis=1)
col1 col2 col3 col4 col5 col6
0 ABC1 15.0 24RA Large 345.0 US
Run Code Online (Sandbox Code Playgroud)
我们可以为每列处理多个值吗?
我们当然可以!
df.loc[2, 'col3'] = 'Test'
col1 col2 col3 col4 col5 col6
0 ABC1 15.0 Test Large 345.0 US
1 NaN NaN 24RA NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
选项1
使用np.where像外科医生一样的通用解决方案
v = df.values
i, j = np.where(np.isnan(v))
s = pd.Series(v[i, j], df.columns[j])
c = s.groupby(level=0).cumcount()
s.index = [c, s.index]
s.unstack(fill_value='-') # <-- don't fill to get NaN
col1 col2 col3 col4 col5 col6
0 ABC1 15.0 24RA Large 345 US
Run Code Online (Sandbox Code Playgroud)
df.loc[2, 'col3'] = 'Test'
v = df.values
i, j = np.where(np.isnan(v))
s = pd.Series(v[i, j], df.columns[j])
c = s.groupby(level=0).cumcount()
s.index = [c, s.index]
s.unstack(fill_value='-') # <-- don't fill to get NaN
col1 col2 col3 col4 col5 col6
0 ABC1 15.0 Test Large 345 US
1 - - 24RA - - -
Run Code Online (Sandbox Code Playgroud)
选项2
mask使空值然后stack摆脱它们
或者我们可以
# This should work even if `'-'` are NaN
# but you can skip the `.mask(df == '-')`
s = df.mask(df == '-').stack().reset_index(0, drop=True)
c = s.groupby(level=0).cumcount()
s.index = [c, s.index]
s.unstack(fill_value='-')
col1 col2 col3 col4 col5 col6
0 ABC1 15.0 Test Large 345 US
1 - - 24RA - - -
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
800 次 |
| 最近记录: |