Gab*_*iel 7 python performance
我试图提高func函数的性能,我发现aX生成列表的方式的简单改变可以提高性能:
import timeit
import numpy as np
def func(a, b):
return [_ for _ in a if _ not in b]
Na, Nb = 10000, 5000
b = list(np.random.randint(1000, size=Nb))
# Ordered list of Na integers
a1 = [_ for _ in range(Na)]
# Random list of Na integers
a2 = list(np.random.randint(Na, size=Na))
# Ordered list of Na integers generated with numpy
a3 = list(np.arange(Na))
start_time = timeit.default_timer()
ab1 = func(a1, b)
abt1 = timeit.default_timer() - start_time
print("Time ab1", abt1)
start_time = timeit.default_timer()
ab2 = func(a2, b)
abt2 = timeit.default_timer() - start_time
print("Time ab2", abt2)
start_time = timeit.default_timer()
ab3 = func(a3, b)
abt3 = timeit.default_timer() - start_time
print("Time ab3", abt3)
print("Ratio 1/2:", abt1 / abt2)
print("Ratio 1/3:", abt1 / abt3)
Run Code Online (Sandbox Code Playgroud)
在Python 2.7.13中,这导致:
('Time ab1', 5.296088933944702)
('Time ab2', 1.5520200729370117)
('Time ab3', 1.5581469535827637)
('Ratio 1/2:', 3.412384302428827)
('Ratio 1/3:', 3.3989662667998095)
Run Code Online (Sandbox Code Playgroud)
在Python 3.5.2中,差异甚至更大:
Time ab1 6.758207322000089
Time ab2 1.5693355060011527
Time ab3 1.5148192759988888
Ratio 1/2: 4.306413317073784
Ratio 1/3: 4.461395117608107
Run Code Online (Sandbox Code Playgroud)
我需要处理一个有序列表整数(即:a1或a3),所以我的问题是:
为什么随机列表的处理速度比没有生成的有序列表快得多numpy?