我在 Python 中有一组记录,其中包含一个 id、至少一个属性和一组日期范围。我想要采用每个 id 的代码,并组合属性匹配且日期范围内没有间隙的所有记录。
日期范围没有间隔,我的意思是一个记录的结束日期大于或等于该 ID 的下一个记录。
例如,ID 为“10”、开始日期为“2016-01-01”和结束日期为“2017-01-01”的记录可以与具有该 ID、开始日期为“2017-01-01”的另一条记录合并”,结束日期为“2018-01-01”,但它不能与从“2017-01-10”开始的记录合并,因为从 2017-01-01 到 2017 会有一个间隔-01-09。
这里有些例子 -
有:
FruitID,FruitType,StartDate,EndDate
1,Apple,2015-01-01,2016-01-01
1,Apple,2016-01-01,2017-01-01
1,Apple,2017-01-01,2018-01-01
2,Orange,2015-01-01,2016-01-01
2,Orange,2016-05-31,2017-01-01
2,Orange,2017-01-01,2018-01-01
3,Banana,2015-01-01,2016-01-01
3,Banana,2016-01-01,2017-01-01
3,Blueberry,2017-01-01,2018-01-01
4,Mango,2015-01-01,2016-01-01
4,Kiwi,2016-09-15,2017-01-01
4,Mango,2017-01-01,2018-01-01
Run Code Online (Sandbox Code Playgroud)
想:
FruitID,FruitType,NewStartDate,NewEndDate
1,Apple,2015-01-01,2018-01-01
2,Orange,2015-01-01,2016-01-01
2,Orange,2016-05-31,2018-01-01
3,Banana,2015-01-01,2017-01-01
3,Blueberry,2017-01-01,2018-01-01
4,Mango,2015-01-01,2016-01-01
4,Kiwi,2016-09-15,2017-01-01
4,Mango,2017-01-01,2018-01-01
Run Code Online (Sandbox Code Playgroud)
我目前的解决方案如下。它提供了我正在寻找的结果,但对于大型数据集,性能似乎并不好。此外,我的印象是您通常希望尽可能避免迭代数据帧的各个行。非常感谢您提供的任何帮助!
import pandas as pd
from dateutil.parser import parse
have = pd.DataFrame.from_items([('FruitID', [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]),
('FruitType', ['Apple', 'Apple', 'Apple', 'Orange', 'Orange', 'Orange', 'Banana', 'Banana', 'Blueberry', 'Mango', 'Kiwi', 'Mango']),
('StartDate', [parse(x) for x in ['2015-01-01', '2016-01-01', '2017-01-01', '2015-01-01', '2016-05-31',
'2017-01-01', '2015-01-01', '2016-01-01', '2017-01-01', '2015-01-01', '2016-09-15', '2017-01-01']]),
('EndDate', [parse(x) for x in ['2016-01-01', '2017-01-01', '2018-01-01', '2016-01-01', '2017-01-01',
'2018-01-01', '2016-01-01', '2017-01-01', '2018-01-01', '2016-01-01', '2017-01-01', '2018-01-01']])
])
have.sort_values(['FruitID', 'StartDate'])
rowlist = []
fruit_cur_row = None
for row in have.itertuples():
if fruit_cur_row is None:
fruit_cur_row = row._asdict()
fruit_cur_row.update(NewStartDate=row.StartDate, NewEndDate=row.EndDate)
elif not(fruit_cur_row.get('FruitType') == row.FruitType):
rowlist.append(fruit_cur_row)
fruit_cur_row = row._asdict()
fruit_cur_row.update(NewStartDate=row.StartDate, NewEndDate=row.EndDate)
elif (row.StartDate <= fruit_cur_row.get('NewEndDate')):
fruit_cur_row['NewEndDate'] = max(fruit_cur_row['NewEndDate'], row.EndDate)
else:
rowlist.append(fruit_cur_row)
fruit_cur_row = row._asdict()
fruit_cur_row.update(NewStartDate=row.StartDate, NewEndDate=row.EndDate)
rowlist.append(fruit_cur_row)
have_mrg = pd.DataFrame.from_dict(rowlist)
print(have_mrg[['FruitID', 'FruitType', 'NewStartDate', 'NewEndDate']])
Run Code Online (Sandbox Code Playgroud)
使用嵌套groupby方法:
def merge_dates(grp):
# Find contiguous date groups, and get the first/last start/end date for each group.
dt_groups = (grp['StartDate'] != grp['EndDate'].shift()).cumsum()
return grp.groupby(dt_groups).agg({'StartDate': 'first', 'EndDate': 'last'})
# Perform a groupby and apply the merge_dates function, followed by formatting.
df = df.groupby(['FruitID', 'FruitType']).apply(merge_dates)
df = df.reset_index().drop('level_2', axis=1)
Run Code Online (Sandbox Code Playgroud)
请注意,此方法假定您的日期已经排序。如果没有,您需要先sort_values在 DataFrame上使用。如果您有嵌套的日期跨度,此方法可能不起作用。
结果输出:
FruitID FruitType StartDate EndDate
0 1 Apple 2015-01-01 2018-01-01
1 2 Orange 2015-01-01 2016-01-01
2 2 Orange 2016-05-31 2018-01-01
3 3 Banana 2015-01-01 2017-01-01
4 3 Blueberry 2017-01-01 2018-01-01
5 4 Kiwi 2016-09-15 2017-01-01
6 4 Mango 2015-01-01 2016-01-01
7 4 Mango 2017-01-01 2018-01-01
Run Code Online (Sandbox Code Playgroud)