Ste*_*hen 6 python-3.x deep-learning tensorflow
我正在使用张量流版本:
0.12.1
Cuda工具集版本是8.
lrwxrwxrwx 1 root root 19 May 28 17:27 cuda -> /usr/local/cuda-8.0
Run Code Online (Sandbox Code Playgroud)
如此处所述 ,我已经下载并安装了cuDNN.但是从我的python脚本执行以下行时,我收到标题中提到的错误消息:
model.fit_generator(train_generator,
steps_per_epoch= len(train_samples),
validation_data=validation_generator,
validation_steps=len(validation_samples),
epochs=9)
Run Code Online (Sandbox Code Playgroud)
详细错误消息如下:
Using TensorFlow backend.
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcurand.so locally
Epoch 1/9 Exception in thread Thread-1: Traceback (most recent call last): File " lib/python3.5/threading.py", line 914, in _bootstrap_inner
self.run() File " lib/python3.5/threading.py", line 862, in run
self._target(*self._args, **self._kwargs) File " lib/python3.5/site-packages/keras/engine/training.py", line 612, in data_generator_task
generator_output = next(self._generator) StopIteration
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1),
but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885]
Found device 0 with properties: name: GRID K520 major: 3 minor: 0 memoryClockRate (GHz) 0.797 pciBusID 0000:00:03.0 Total memory: 3.94GiB Free memory:
3.91GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975]
Creating TensorFlow device (/gpu:0) -> (device: 0, name: GRID K520, pci bus id: 0000:00:03.0)
Traceback (most recent call last): File "model_new.py", line 82, in <module>
model.fit_generator(train_generator, steps_per_epoch= len(train_samples),validation_data=validation_generator, validation_steps=len(validation_samples),epochs=9) File " lib/python3.5/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs) File " lib/python3.5/site-packages/keras/models.py", line 1110, in fit_generator
initial_epoch=initial_epoch) File " lib/python3.5/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs) File " lib/python3.5/site-packages/keras/engine/training.py", line 1890, in fit_generator
class_weight=class_weight) File " lib/python3.5/site-packages/keras/engine/training.py", line 1633, in train_on_batch
outputs = self.train_function(ins) File " lib/python3.5/site-packages/keras/backend/tensorflow_backend.py", line 2229, in __call__
feed_dict=feed_dict) File " lib/python3.5/site-packages/tensorflow/python/client/session.py", line 766, in run
run_metadata_ptr) File " lib/python3.5/site-packages/tensorflow/python/client/session.py", line 937, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype) File " lib/python3.5/site-packages/numpy/core/numeric.py", line 531, in asarray
return array(a, dtype, copy=False, order=order) MemoryError
Run Code Online (Sandbox Code Playgroud)
如果有任何建议,以解决此错误.
编辑: 问题是致命的.
uname -a
Linux ip-172-31-76-109 4.4.0-78-generic #99-Ubuntu SMP
Thu Apr 27 15:29:09 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
sudo lshw -short
[sudo] password for carnd:
H/W path Device Class Description
==========================================
system HVM domU
/0 bus Motherboard
/0/0 memory 96KiB BIOS
/0/401 processor Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz
/0/402 processor CPU
/0/403 processor CPU
/0/404 processor CPU
/0/405 processor CPU
/0/406 processor CPU
/0/407 processor CPU
/0/408 processor CPU
/0/1000 memory 15GiB System Memory
/0/1000/0 memory 15GiB DIMM RAM
/0/100 bridge 440FX - 82441FX PMC [Natoma]
/0/100/1 bridge 82371SB PIIX3 ISA [Natoma/Triton II]
/0/100/1.1 storage 82371SB PIIX3 IDE [Natoma/Triton II]
/0/100/1.3 bridge 82371AB/EB/MB PIIX4 ACPI
/0/100/2 display GD 5446
/0/100/3 display GK104GL [GRID K520]
/0/100/1f generic Xen Platform Device
/1 eth0 network Ethernet interface
Run Code Online (Sandbox Code Playgroud)
编辑2:
这是Amazon云中的EC2实例.并且所有文件的值为-1.
:/sys$ find . -name numa_node -exec cat '{}' \;
find: ‘./fs/fuse/connections/39’: Permission denied
-1
-1
-1
-1
-1
-1
-1
find: ‘./kernel/debug’: Permission denied
Run Code Online (Sandbox Code Playgroud)
EDIT3: 更新numa_nod文件后,NUMA相关错误消失.但是上面列出的所有其他错误仍然存在.我又一次致命的错误.
Using TensorFlow backend.
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcurand.so locally
Epoch 1/9
Exception in thread Thread-1:
Traceback (most recent call last):
File " lib/python3.5/threading.py", line 914, in _bootstrap_inner
self.run()
File " lib/python3.5/threading.py", line 862, in run
self._target(*self._args, **self._kwargs)
File " lib/python3.5/site-packages/keras/engine/training.py", line 612, in data_generator_task
generator_output = next(self._generator)
StopIteration
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
name: GRID K520
major: 3 minor: 0 memoryClockRate (GHz) 0.797
pciBusID 0000:00:03.0
Total memory: 3.94GiB
Free memory: 3.91GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GRID K520, pci bus id: 0000:00:03.0)
Traceback (most recent call last):
File "model_new.py", line 85, in <module>
model.fit_generator(train_generator, steps_per_epoch= len(train_samples),validation_data=validation_generator, validation_steps=len(validation_samples),epochs=9)
File " lib/python3.5/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs)
File " lib/python3.5/site-packages/keras/models.py", line 1110, in fit_generator
initial_epoch=initial_epoch)
File " lib/python3.5/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs)
File " lib/python3.5/site-packages/keras/engine/training.py", line 1890, in fit_generator
class_weight=class_weight)
File " lib/python3.5/site-packages/keras/engine/training.py", line 1633, in train_on_batch
outputs = self.train_function(ins)
File " lib/python3.5/site-packages/keras/backend/tensorflow_backend.py", line 2229, in __call__
feed_dict=feed_dict)
File " lib/python3.5/site-packages/tensorflow/python/client/session.py", line 766, in run
run_metadata_ptr)
File " lib/python3.5/site-packages/tensorflow/python/client/session.py", line 937, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
File " lib/python3.5/site-packages/numpy/core/numeric.py", line 531, in asarray
return array(a, dtype, copy=False, order=order)
MemoryError
Run Code Online (Sandbox Code Playgroud)
nor*_*ius 27
这修改了接受的答案:
令人烦恼的是,numa_node每次系统重新启动时,该设置都会重置(为值-1)。要更持久地解决此问题,您可以创建一个 crontab(以 root 身份)。
以下步骤对我有用:
# 1) Identify the PCI-ID (with domain) of your GPU
# For example: PCI_ID="0000.81:00.0"
lspci -D | grep NVIDIA
# 2) Add a crontab for root
sudo crontab -e
# Add the following line
@reboot (echo 0 | tee -a "/sys/bus/pci/devices/<PCI_ID>/numa_node")
Run Code Online (Sandbox Code Playgroud)
这保证了每次重新启动时 GPU 设备的 NUMA 关联性都设置为 0。
再次请记住,这只是一个“浅层”修复,因为 Nvidia 驱动程序并没有意识到这一点:
nvidia-smi topo -m
# GPU0 CPU Affinity NUMA Affinity
# GPU0 X 0-127 N/A
Run Code Online (Sandbox Code Playgroud)
osg*_*sgx 14
有代码打印消息"从SysFS读取的成功NUMA节点具有负值(-1)",并且它不是致命错误,它只是警告.真正的错误MemoryError在你的身上File "model_new.py", line 85, in <module>.我们需要更多来源来检查此错误.尝试使您的模型更小或在具有更多RAM的服务器上运行.
关于NUMA节点警告:
// Attempts to read the NUMA node corresponding to the GPU device's PCI bus out
// of SysFS. Returns -1 if it cannot...
static int TryToReadNumaNode(const string &pci_bus_id, int device_ordinal)
{...
string filename =
port::Printf("/sys/bus/pci/devices/%s/numa_node", pci_bus_id.c_str());
FILE *file = fopen(filename.c_str(), "r");
if (file == nullptr) {
LOG(ERROR) << "could not open file to read NUMA node: " << filename
<< "\nYour kernel may have been built without NUMA support.";
return kUnknownNumaNode;
} ...
if (port::safe_strto32(content, &value)) {
if (value < 0) { // See http://b/18228951 for details on this path.
LOG(INFO) << "successful NUMA node read from SysFS had negative value ("
<< value << "), but there must be at least one NUMA node"
", so returning NUMA node zero";
fclose(file);
return 0;
}
Run Code Online (Sandbox Code Playgroud)
TensorFlow能够打开/sys/bus/pci/devices/%s/numa_node文件,其中%s是GPU PCI卡的ID(string pci_bus_id = CUDADriver::GetPCIBusID(device_)).您的PC不是多插槽的,只有单个CPU插槽,安装了8核Xeon E5-2670,因此该ID应该为'0'(单个NUMA节点在Linux中编号为0),但错误消息显示它是-1这个文件中的值!
所以,我们知道sysfs已经挂载/sys,有numa_node特殊文件,你的Linux内核config(zgrep NUMA /boot/config* /proc/config*)中启用了CONFIG_NUMA .实际上它已启用:CONFIG_NUMA=y- 在你的x86_64 4.4.0-78通用内核的deb中
特殊文件numa_node记录在https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-bus-pci(您的PC的ACPI错误吗?)
What: /sys/bus/pci/devices/.../numa_node
Date: Oct 2014
Contact: Prarit Bhargava <prarit@redhat.com>
Description:
This file contains the NUMA node to which the PCI device is
attached, or -1 if the node is unknown. The initial value
comes from an ACPI _PXM method or a similar firmware
source. If that is missing or incorrect, this file can be
written to override the node. In that case, please report
a firmware bug to the system vendor. Writing to this file
taints the kernel with TAINT_FIRMWARE_WORKAROUND, which
reduces the supportability of your system.
Run Code Online (Sandbox Code Playgroud)
这个错误有快速(kludge)解决方法:找到numa_node你的GPU并使用root帐户在每次启动后执行此命令,其中NNNNN是卡的PCI ID(在lspci输出和/sys/bus/pci/devices/目录中搜索)
echo 0 | sudo tee -a /sys/bus/pci/devices/NNNNN/numa_node
Run Code Online (Sandbox Code Playgroud)
或者只是将它回显到每个这样的文件中,它应该是相当安全的:
for a in /sys/bus/pci/devices/*; do echo 0 | sudo tee -a $a/numa_node; done
Run Code Online (Sandbox Code Playgroud)
你的lshw节目也表明它不是PC,而是Xen虚拟客户.Xen平台(ACPI)仿真与Linux PCI总线NUMA支持代码之间存在一些问题.
| 归档时间: |
|
| 查看次数: |
9257 次 |
| 最近记录: |