我的数据看起来像这样(注意日期是DD-MM-YYYY格式):
ID date drug score
A 28/08/2016 2 3
A 29/08/2016 1 4
A 30/08/2016 2 4
A 2/09/2016 2 4
A 3/09/2016 1 4
A 4/09/2016 2 4
B 8/08/2016 1 3
B 9/08/2016 2 4
B 10/08/2016 2 3
B 11/08/2016 1 3
C 30/11/2016 2 4
C 2/12/2016 1 5
C 3/12/2016 2 1
C 5/12/2016 1 4
C 6/12/2016 2 4
C 8/12/2016 1 2
C 9/12/2016 1 2
Run Code Online (Sandbox Code Playgroud)
对于'药物':1 =服用药物,2 =不服用药物.
我需要总结每个ID:
如果连续2天服用药物(例如该实施例的最后2行),则不应在-1天或+ 1天计算中计算这些分数(即,最后两行中的每一行都将有助于0day分数)但不会对其他指标做出贡献).
所以对于这个示例数据,我需要一个像这样的输出表:
-1day 0day +1day
A 3.5 4 4
B 3 3 4
C 3.25 2.5
Run Code Online (Sandbox Code Playgroud)
请注意,没有所有日期的记录,并且-1day和+ 1day计算需要基于实际日期而不仅仅是数据集中的记录.
我不知道该怎么做.
我还有两个额外的奖励问题:
我很可能还需要计算-2天和2天的分数,所以需要能够调整答案来做到这一点.
我怎样才能计算出一个NoDrug评分,这是所有天数的平均值,不是在服药一天的5天内.
以下是使用此示例数据生成数据框的代码:
data<-data.frame(ID=c("A","A","A","A","A","A","B","B","B","B","C","C","C","C","C","C","C"),
date=as.Date(c("28/08/2016","29/08/2016","30/08/2016","2/09/2016","3/09/2016","4/09/2016","8/08/2016","9/08/2016","10/08/2016","11/08/2016","30/11/2016","2/12/2016","3/12/2016","5/12/2016","6/12/2016","8/12/2016","9/12/2016"),format= "%d/%m/%Y"),
drug=c(2,1,2,2,1,2,1,2,2,1,2,1,2,1,2,1,1),
score=c(3,4,4,4,4,4,3,4,3,3,4,5,1,4,4,2,2))
Run Code Online (Sandbox Code Playgroud)
您可以使用 dplyr 来获取:
df <- data.frame(
ID=c("A","A","A","A","A","A","B","B","B","B","C","C","C","C","C","C","C"),
date=as.Date(c("28/08/2016","29/08/2016","30/08/2016","2/09/2016","3/09/2016","4/09/2016","8/08/2016","9/08/2016","10/08/2016","11/08/2016","30/11/2016","2/12/2016","3/12/2016","5/12/2016","6/12/2016","8/12/2016","9/12/2016"),format= "%d/%m/%Y"),
drug=c(2,1,2,2,1,2,1,2,2,1,2,1,2,1,2,1,1),
score=c(3,4,4,4,4,4,3,4,3,3,4,5,1,4,4,2,2)
)
df
#> ID date drug score
#> 1 A 2016-08-28 2 3
#> 2 A 2016-08-29 1 4
#> 3 A 2016-08-30 2 4
#> 4 A 2016-09-02 2 4
#> 5 A 2016-09-03 1 4
#> 6 A 2016-09-04 2 4
#> 7 B 2016-08-08 1 3
#> 8 B 2016-08-09 2 4
#> 9 B 2016-08-10 2 3
#> 10 B 2016-08-11 1 3
#> 11 C 2016-11-30 2 4
#> 12 C 2016-12-02 1 5
#> 13 C 2016-12-03 2 1
#> 14 C 2016-12-05 1 4
#> 15 C 2016-12-06 2 4
#> 16 C 2016-12-08 1 2
#> 17 C 2016-12-09 1 2
Run Code Online (Sandbox Code Playgroud)
解决此类问题的一个好方法是使用tidyr::complete
library(dplyr)
library(tidyr)
df1 <- df %>%
group_by(ID) %>%
complete(date = seq(min(date), max(date), by = "day"))
df1
#> Source: local data frame [22 x 4]
#> Groups: ID [3]
#>
#> # A tibble: 22 x 4
#> ID date drug score
#> <fctr> <date> <dbl> <dbl>
#> 1 A 2016-08-28 2 3
#> 2 A 2016-08-29 1 4
#> 3 A 2016-08-30 2 4
#> 4 A 2016-08-31 NA NA
#> 5 A 2016-09-01 NA NA
#> 6 A 2016-09-02 2 4
#> 7 A 2016-09-03 1 4
#> 8 A 2016-09-04 2 4
#> 9 B 2016-08-08 1 3
#> 10 B 2016-08-09 2 4
#> # ... with 12 more rows
Run Code Online (Sandbox Code Playgroud)
df2 <- df1 %>%
group_by(ID) %>%
mutate(day_of = drug == 1,
day_before = (lead(drug) == 1 & day_of == FALSE),
day_after = (lag(drug) == 1 & day_of == FALSE))
df2
#> Source: local data frame [22 x 7]
#> Groups: ID [3]
#>
#> # A tibble: 22 x 7
#> ID date drug score day_of day_before day_after
#> <fctr> <date> <dbl> <dbl> <lgl> <lgl> <lgl>
#> 1 A 2016-08-28 2 3 FALSE TRUE NA
#> 2 A 2016-08-29 1 4 TRUE FALSE FALSE
#> 3 A 2016-08-30 2 4 FALSE NA TRUE
#> 4 A 2016-08-31 NA NA NA NA FALSE
#> 5 A 2016-09-01 NA NA NA FALSE NA
#> 6 A 2016-09-02 2 4 FALSE TRUE NA
#> 7 A 2016-09-03 1 4 TRUE FALSE FALSE
#> 8 A 2016-09-04 2 4 FALSE NA TRUE
#> 9 B 2016-08-08 1 3 TRUE FALSE FALSE
#> 10 B 2016-08-09 2 4 FALSE FALSE TRUE
#> # ... with 12 more rows
Run Code Online (Sandbox Code Playgroud)
dplyr::mutate_at将函数 ( 中funs()) 应用于 中选择的所有列vars()。summarise_at在对某些选定列进行操作方面,操作方式相同,但不是更改整个数据集的值,而是将其减少为每组一行。可以阅读有关 m mutate、summarise和特殊*_at版本的更多信息。
df3 <- df2 %>%
mutate_at(vars(starts_with("day_")), funs(if_else(. == TRUE, score, NA_real_))) %>%
summarise_at(vars(starts_with("day_")), mean, na.rm = TRUE)
df3
#> # A tibble: 3 x 4
#> ID day_of day_before day_after
#> <fctr> <dbl> <dbl> <dbl>
#> 1 A 4.00 3.5 4.0
#> 2 B 3.00 3.0 4.0
#> 3 C 3.25 NaN 2.5
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
115 次 |
| 最近记录: |