hal*_*fak 15 python performance profiling
似乎在生成器表达式(test1)周围使用[]表现得比将它放在list()(test2)中要好得多.当我只是将列表传递给list()以进行浅拷贝(test3)时,速度就不存在了.为什么是这样?
证据:
from timeit import Timer
t1 = Timer("test1()", "from __main__ import test1")
t2 = Timer("test2()", "from __main__ import test2")
t3 = Timer("test3()", "from __main__ import test3")
x = [34534534, 23423523, 77645645, 345346]
def test1():
[e for e in x]
print t1.timeit()
#0.552290201187
def test2():
list(e for e in x)
print t2.timeit()
#2.38739395142
def test3():
list(x)
print t3.timeit()
#0.515818119049
Run Code Online (Sandbox Code Playgroud)
机器:64位AMD,Ubuntu 8.04,Python 2.7(r27:82500)
Kat*_*iel 34
好吧,我的第一步是独立设置两个测试,以确保这不是例如定义函数的顺序的结果.
>python -mtimeit "x=[34534534, 23423523, 77645645, 345346]" "[e for e in x]"
1000000 loops, best of 3: 0.638 usec per loop
>python -mtimeit "x=[34534534, 23423523, 77645645, 345346]" "list(e for e in x)"
1000000 loops, best of 3: 1.72 usec per loop
Run Code Online (Sandbox Code Playgroud)
果然,我可以复制这个.好的,下一步是查看字节码,看看实际发生了什么:
>>> import dis
>>> x=[34534534, 23423523, 77645645, 345346]
>>> dis.dis(lambda: [e for e in x])
1 0 LOAD_CONST 0 (<code object <listcomp> at 0x0000000001F8B330, file "<stdin>", line 1>)
3 MAKE_FUNCTION 0
6 LOAD_GLOBAL 0 (x)
9 GET_ITER
10 CALL_FUNCTION 1
13 RETURN_VALUE
>>> dis.dis(lambda: list(e for e in x))
1 0 LOAD_GLOBAL 0 (list)
3 LOAD_CONST 0 (<code object <genexpr> at 0x0000000001F8B9B0, file "<stdin>", line 1>)
6 MAKE_FUNCTION 0
9 LOAD_GLOBAL 1 (x)
12 GET_ITER
13 CALL_FUNCTION 1
16 CALL_FUNCTION 1
19 RETURN_VALUE
Run Code Online (Sandbox Code Playgroud)
请注意,第一个方法直接创建列表,而第二个方法创建一个genexpr
对象并将其传递给全局list
.这可能是开销所在.
还要注意,差异大约是一微秒,即完全无关紧要.
这仍然适用于非平凡的列表
>python -mtimeit "x=range(100000)" "[e for e in x]"
100 loops, best of 3: 8.51 msec per loop
>python -mtimeit "x=range(100000)" "list(e for e in x)"
100 loops, best of 3: 11.8 msec per loop
Run Code Online (Sandbox Code Playgroud)
对于不那么简单的地图功能:
>python -mtimeit "x=range(100000)" "[2*e for e in x]"
100 loops, best of 3: 12.8 msec per loop
>python -mtimeit "x=range(100000)" "list(2*e for e in x)"
100 loops, best of 3: 16.8 msec per loop
Run Code Online (Sandbox Code Playgroud)
和(虽然不太强烈)如果我们过滤列表:
>python -mtimeit "x=range(100000)" "[e for e in x if e%2]"
100 loops, best of 3: 14 msec per loop
>python -mtimeit "x=range(100000)" "list(e for e in x if e%2)"
100 loops, best of 3: 16.5 msec per loop
Run Code Online (Sandbox Code Playgroud)
list(e for e in x)
是不是列表理解,这是一个genexpr
对象(e for e in x)
被创建并传递给list
工厂函数.据推测,对象创建和方法调用会产生开销.
归档时间: |
|
查看次数: |
2705 次 |
最近记录: |