Lit*_*les 5 method-chaining multi-index pandas
对于单级索引列,我会执行以下操作
arrays = [['one', 'two', ]]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(pd.np.random.randn(3, 2), index=['A', 'B', 'C'], columns=index)
print(df)
first one two
A 0.919921 -1.407321
B 1.100169 -0.927249
C -0.520308 0.619783
print(df.assign(one=lambda x: x.one * 100))
first one two
A 144.950877 0.633516
B -0.593133 -0.630641
C -5.661949 -0.738884
Run Code Online (Sandbox Code Playgroud)
现在,当我有一个 MultiIndex 列时,我可以使用访问所需的列,.loc但我无法将其分配给任何内容,因为它出现了错误SyntaxError: keyword can't be an expression。
这是一个例子,
arrays = [['bar', 'bar'],
['one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(pd.np.random.randn(3, 2), index=['A', 'B', 'C'], columns=index)
print(df)
first bar
second one two
A 1.119243 0.819455
B -0.473354 -1.340502
C 0.150403 -0.211392
Run Code Online (Sandbox Code Playgroud)
然而,
df.assign(('bar', 'one')=lambda x: x.loc[:, ('bar', 'one')] * 10)
SyntaxError: keyword can't be an expression
Run Code Online (Sandbox Code Playgroud)
我可以
df.assign(barOne=lambda x: x.loc[:, ('bar', 'one')] * 10)
first bar barOne
second one two
A 0.433909 0.949701 4.339091
B 0.011486 -1.395144 0.114858
C -0.289821 2.106951 -2.89821
Run Code Online (Sandbox Code Playgroud)
但这是不可取的。我想保持我的方法链很好,但也保持 MultiIndexed 列。
如果我没看错的话,事情会不会这么简单:
原始 df:
first bar
second one two
A 0.386729 1.014010
B 0.236824 0.439019
C 0.530020 -0.268751
Run Code Online (Sandbox Code Playgroud)
代码:
df[('bar','one')] *= 10
Run Code Online (Sandbox Code Playgroud)
更新了 df (修改列):
first bar
second one two
A 3.8672946 1.014010
B 2.3682376 0.439019
C 5.3002040 -0.268751
Run Code Online (Sandbox Code Playgroud)
或者,更新 df (创建新列):
df[('bar','new')] = df[('bar','one')] * 10
first bar
second one two new
A 0.386729 1.014010 3.867295
B 0.236824 0.439019 2.368238
C 0.530020 -0.268751 5.300204
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
890 次 |
| 最近记录: |