如何在TensorFlow中打印出LSTM门的值?

gra*_*tur 5 python lstm tensorflow

我正在使用TensorFlow LSTM作为语言模型(我有一系列单词并希望预测下一个单词),当我运行语言模型时,我想要打印出忘记,输入的值,每一步都转换和输出门.我该怎么做呢?

通过检查https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/rnn_cell.py中的代码,我看到LayerNormBasicLSTMCell该类有一个call包含i, j, f, o我想要的变量的方法打印出来.

  def call(self, inputs, state):
    """LSTM cell with layer normalization and recurrent dropout."""
    c, h = state
    args = array_ops.concat([inputs, h], 1)
    concat = self._linear(args)

    i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
    if self._layer_norm:
      i = self._norm(i, "input")
      j = self._norm(j, "transform")
      f = self._norm(f, "forget")
      o = self._norm(o, "output")

    g = self._activation(j)
    if (not isinstance(self._keep_prob, float)) or self._keep_prob < 1:
      g = nn_ops.dropout(g, self._keep_prob, seed=self._seed)

    new_c = (c * math_ops.sigmoid(f + self._forget_bias)
             + math_ops.sigmoid(i) * g)
    if self._layer_norm:
      new_c = self._norm(new_c, "state")
    new_h = self._activation(new_c) * math_ops.sigmoid(o)

    new_state = core_rnn_cell.LSTMStateTuple(new_c, new_h)
    return new_h, new_state
Run Code Online (Sandbox Code Playgroud)

但是,有一种简单的方法可以打印出这些变量吗?或者我必须在我运行LTSM的脚本中基本上重新创建此方法中的相关代码行?

Sra*_*raw 0

我曾经在 git issues 中问过类似的问题。而响应是原始细胞只返回ch(这也是每一步的输出y)。如果你想获取内部变量,你需要自己做。

这是链接: https: //github.com/tensorflow/tensorflow/issues/5731