Eri*_*ric 5 neural-network python-3.x deep-learning keras keras-layer
我想向输出层添加新节点以便稍后对其进行训练,我正在这样做:
def add_outputs(self, n_new_outputs):
out = self.model.get_layer('fc8').output
last_layer = self.model.get_layer('fc7').output
out2 = Dense(n_new_outputs, activation='softmax', name='fc9')(last_layer)
output = merge([out, out2], mode='concat')
self.model = Model(input=self.model.input, output=output)
Run Code Online (Sandbox Code Playgroud)
其中'fc7'是输出层之前的全连接层'fc8'。我希望只有最后一层,out = self.model.get_layer('fc8').output但输出是所有模型。有没有办法只从网络中获取一层?也许还有其他更简单的方法可以做到这一点......
谢谢!!!!
最后我找到了解决方案:
1)获取最后一层的权重
2)向权重添加零并随机初始化其连接
3)弹出输出层并创建一个新层
4)为新层设置新权重
这里是代码:
def add_outputs(self, n_new_outputs):
#Increment the number of outputs
self.n_outputs += n_new_outputs
weights = self.model.get_layer('fc8').get_weights()
#Adding new weights, weights will be 0 and the connections random
shape = weights[0].shape[0]
weights[1] = np.concatenate((weights[1], np.zeros(n_new_outputs)), axis=0)
weights[0] = np.concatenate((weights[0], -0.0001 * np.random.random_sample((shape, n_new_outputs)) + 0.0001), axis=1)
#Deleting the old output layer
self.model.layers.pop()
last_layer = self.model.get_layer('batchnormalization_1').output
#New output layer
out = Dense(self.n_outputs, activation='softmax', name='fc8')(last_layer)
self.model = Model(input=self.model.input, output=out)
#set weights to the layer
self.model.get_layer('fc8').set_weights(weights)
print(weights[0])
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1571 次 |
| 最近记录: |