SKLearn MinMaxScaler - 仅限比例特定列

lte*_*e__ 12 rescale pandas scikit-learn

我想使用MinMaxScaler扩展Pandas dataFrame中的一些(但不是全部)列.我该怎么做?

Max*_*axU 16

演示:

In [90]: df = pd.DataFrame(np.random.randn(5, 3), index=list('abcde'), columns=list('xyz'))

In [91]: df
Out[91]:
          x         y         z
a -0.325882 -0.299432 -0.182373
b -0.833546 -0.472082  1.158938
c -0.328513 -0.664035  0.789414
d -0.031630 -1.040802 -1.553518
e  0.813328  0.076450  0.022122

In [92]: from sklearn.preprocessing import MinMaxScaler

In [93]: mms = MinMaxScaler()

In [94]: df[['x','z']] = mms.fit_transform(df[['x','z']])

In [95]: df
Out[95]:
          x         y         z
a  0.308259 -0.299432  0.505500
b  0.000000 -0.472082  1.000000
c  0.306662 -0.664035  0.863768
d  0.486932 -1.040802  0.000000
e  1.000000  0.076450  0.580891
Run Code Online (Sandbox Code Playgroud)

使用sklearn.preprocessing.minmax_scale以下方法也可以实现相同的结果:

from sklearn.preprocessing import minmax_scale

df[['x','z']] = minmax_scale(df[['x','z']])
Run Code Online (Sandbox Code Playgroud)

  • 指出`minmax_scale` 开箱即用在单个数据帧列上可能对某些人有所帮助,其中`MinMaxScaler` 似乎需要多个列。如果你只想缩放`x`,`df['x'] = minmax_scale(df['x'])`。如果要缩放的值不是浮点数,则使用 `df['x'] = minmax_scale(df['x'].astype(np.float64))`,以避免 dtype 转换警告。 (4认同)

Ran*_*dom 14

由于 sklearn >= 0.20 你可以使用Column Transformer

standard_transformer = Pipeline(steps=[
        ('standard', StandardScaler())])

minmax_transformer = Pipeline(steps=[
        ('minmax', MinMaxScaler())])


preprocessor = ColumnTransformer(
        remainder='passthrough', #passthough features not listed
        transformers=[
            ('std', standard_transformer , ['z']),
            ('mm', minmax_transformer , ['x','y'])
        ])
Run Code Online (Sandbox Code Playgroud)