Min*_*Min 3 python matplotlib pandas
我有两列,分类列和年份列,我正在尝试绘制它们。我试图将每年每个类别的总和来创建一个多类时间序列图。
ax = data[data.categorical=="cat1"]["categorical"].plot(label='cat1')
data[data.categorical=="cat2"]["categorical"].plot(ax=ax, label='cat3')
data[data.categorical=="cat3"]["categorical"].plot(ax=ax, label='cat3')
plt.xlabel("Year")
plt.ylabel("Number per category")
sns.despine()
Run Code Online (Sandbox Code Playgroud)
但出现错误,指出没有要绘制的数字数据。我正在寻找与上面类似的东西,也许与data[data.categorical=="cat3"]["categorical"].lambda x : (1 for x in data.categorical)
我将使用以下列表作为示例。
categorical = ["cat1","cat1","cat2","cat3","cat2","cat1","cat3","cat2","cat1","cat3","cat3","cat3","cat2","cat1","cat2","cat3","cat2","cat2","cat3","cat1","cat1","cat1","cat3"]
year = [2013,2014,2013,2015,2014,2014,2013,2014,2014,2015,2015,2013,2014,2014,2013,2014,2015,2015,2015,2013,2014,2015,2013]
Run Code Online (Sandbox Code Playgroud)
我不太愿意称其为“解决方案”,因为它基本上只是 Pandas 基本功能的摘要,在您在帖子中找到时间序列图的同一文档中对此进行了解释。但鉴于周围groupby
和情节上存在一些混乱,演示可能有助于澄清问题。
我们可以使用两次调用groupby()
.
第一个groupby()
使用聚合获取每年类别出现的计数count
。
第二个groupby()
用于绘制每个类别的时间序列。
首先,生成一个示例数据框:
import pandas as pd
categorical = ["cat1","cat1","cat2","cat3","cat2","cat1","cat3","cat2",
"cat1","cat3","cat3","cat3","cat2","cat1","cat2","cat3",
"cat2","cat2","cat3","cat1","cat1","cat1","cat3"]
year = [2013,2014,2013,2015,2014,2014,2013,2014,2014,2015,2015,2013,
2014,2014,2013,2014,2015,2015,2015,2013,2014,2015,2013]
df = pd.DataFrame({'categorical':categorical,
'year':year})
categorical year
0 cat1 2013
1 cat1 2014
...
21 cat1 2015
22 cat3 2013
Run Code Online (Sandbox Code Playgroud)
现在获取每年每个类别的计数:
# reset_index() gives a column for counting, after groupby uses year and category
ctdf = (df.reset_index()
.groupby(['year','categorical'], as_index=False)
.count()
# rename isn't strictly necessary here, it's just for readability
.rename(columns={'index':'ct'})
)
year categorical ct
0 2013 cat1 2
1 2013 cat2 2
2 2013 cat3 3
3 2014 cat1 5
4 2014 cat2 3
5 2014 cat3 1
6 2015 cat1 1
7 2015 cat2 2
8 2015 cat3 4
Run Code Online (Sandbox Code Playgroud)
最后,绘制每个类别的时间序列,按颜色键控:
from matplotlib import pyplot as plt
fig, ax = plt.subplots()
# key gives the group name (i.e. category), data gives the actual values
for key, data in ctdf.groupby('categorical'):
data.plot(x='year', y='ct', ax=ax, label=key)
Run Code Online (Sandbox Code Playgroud)