shi*_*iva 6 gpu callback training-data keras
我按照keras博客中的示例,通过顶级模型的预训练和学习权重对数据上的vgg19模型进行微调。我在每个任务具有32 cpu任务和两个tesla K20 GPU的集群上运行代码。我有几条警告消息:UserWarning:与批处理更新(0.118864)相比,方法on_batch_end()速度较慢。检查您的回调。某些事情显然在减慢我的训练阶段。这是我的代码:
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense
from keras import applications
from keras import backend as K
from keras import optimizers
from keras.models import Model
K.set_image_dim_ordering('tf')
# dimensions of our images.
img_width, img_height = 48, 48
top_model_weights_path = 'modelvgg19_10k.h5'
train_data_dir = 'data13/train'
validation_data_dir = 'data13/validation'
nb_train_samples = 16000
nb_validation_samples = 4000
epochs = 50
batch_size = 200
def save_bottlebeck_features():
datagen = ImageDataGenerator(rescale=1. / 255)
model = applications.VGG19(include_top=False, weights='imagenet', input_shape=(48,48,3))
generator = datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
bottleneck_features_train = model.predict_generator(
generator, nb_train_samples // batch_size)
np.save(open('bottleneck_features_train', 'wb'),bottleneck_features_train)
generator = datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
bottleneck_features_validation = model.predict_generator(
generator, nb_validation_samples // batch_size)
np.save(open('bottleneck_features_validation', 'wb'),bottleneck_features_validation)
def train_top_model():
train_data = np.load(open('bottleneck_features_train', 'rb'))
train_labels = np.array([0] * (nb_train_samples // 2) + [1] * (nb_train_samples // 2))
validation_data = np.load(open('bottleneck_features_validation', 'rb'))
validation_labels = np.array([0] * (nb_validation_samples // 2) + [1] * (nb_validation_samples // 2))
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(validation_data, validation_labels))
model.save_weights(top_model_weights_path)
save_bottlebeck_features()
train_top_model()
# path to the model weights files.
weights_path = '../keras/examples/vgg19_weights.h5'
top_model_weights_path = 'modelvgg19_10k.h5'
# dimensions of our images.
img_width, img_height = 48, 48
train_data_dir = 'data13/train'
validation_data_dir = 'data13/validation'
nb_train_samples = 16000
nb_validation_samples = 4000
epochs = 80
batch_size = 200
# build the VGG16 network
base_model = applications.VGG19(weights='imagenet', include_top=False, input_shape=(48,48,3))
print('Model loaded.')
# build a classifier model to put on top of the convolutional model
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(1, activation='sigmoid'))
# note that it is necessary to start with a fully-trained
# classifier, including the top classifier,
# in order to successfully do fine-tuning
top_model.load_weights(top_model_weights_path)
# add the model on top of the convolutional base
# model.add(top_model)
model = Model(inputs=base_model.input, outputs=top_model(base_model.output))
# set the first 15 layers (up to the last conv block)
# to non-trainable (weights will not be updated)
for layer in model.layers[:15]:
layer.trainable = False
# compile the model with a SGD/momentum optimizer
# and a very slow learning rate.
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
metrics=['accuracy'])
# prepare data augmentation configuration
train_datagen = ImageDataGenerator(rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
model.summary()
# fine-tune the model
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
verbose=1)}
Run Code Online (Sandbox Code Playgroud)
请提供加速培训的解决方案。
| 归档时间: |
|
| 查看次数: |
1634 次 |
| 最近记录: |