pon*_*thu 5 python sparse-matrix apache-spark pyspark
我想找到一种使用数据帧在PySpark中创建备用向量的有效方法.
让我们说给出交易输入:
df = spark.createDataFrame([
(0, "a"),
(1, "a"),
(1, "b"),
(1, "c"),
(2, "a"),
(2, "b"),
(2, "b"),
(2, "b"),
(2, "c"),
(0, "a"),
(1, "b"),
(1, "b"),
(2, "cc"),
(3, "a"),
(4, "a"),
(5, "c")
], ["id", "category"])
Run Code Online (Sandbox Code Playgroud)
+---+--------+
| id|category|
+---+--------+
| 0| a|
| 1| a|
| 1| b|
| 1| c|
| 2| a|
| 2| b|
| 2| b|
| 2| b|
| 2| c|
| 0| a|
| 1| b|
| 1| b|
| 2| cc|
| 3| a|
| 4| a|
| 5| c|
+---+--------+
Run Code Online (Sandbox Code Playgroud)
总结格式:
df.groupBy(df["id"],df["category"]).count().show()
Run Code Online (Sandbox Code Playgroud)
+---+--------+-----+
| id|category|count|
+---+--------+-----+
| 1| b| 3|
| 1| a| 1|
| 1| c| 1|
| 2| cc| 1|
| 2| c| 1|
| 2| a| 1|
| 1| a| 1|
| 0| a| 2|
+---+--------+-----+
Run Code Online (Sandbox Code Playgroud)
我的目标是通过id得到这个输出:
+---+-----------------------------------------------+
| id| feature |
+---+-----------------------------------------------+
| 2|SparseVector({a: 1.0, b: 3.0, c: 1.0, cc: 1.0})|
Run Code Online (Sandbox Code Playgroud)
你能指点我正确的方向吗?使用Java中的mapreduce对我来说似乎更容易.
use*_*411 11
这可以通过pivot
和很容易地完成VectorAssembler
.将聚合替换为pivot
:
pivoted = df.groupBy("id").pivot("category").count().na.fill(0)
Run Code Online (Sandbox Code Playgroud)
和组装:
from pyspark.ml.feature import VectorAssembler
input_cols = [x for x in pivoted.columns if x != id]
result = (VectorAssembler(inputCols=input_cols, outputCol="features")
.transform(pivoted)
.select("id", "features"))
Run Code Online (Sandbox Code Playgroud)
结果如下.这将根据稀疏性选择更有效的表示:
+---+---------------------+
|id |features |
+---+---------------------+
|0 |(5,[1],[2.0]) |
|5 |(5,[0,3],[5.0,1.0]) |
|1 |[1.0,1.0,3.0,1.0,0.0]|
|3 |(5,[0,1],[3.0,1.0]) |
|2 |[2.0,1.0,3.0,1.0,1.0]|
|4 |(5,[0,1],[4.0,1.0]) |
+---+---------------------+
Run Code Online (Sandbox Code Playgroud)
但当然你仍然可以将它转换为单一的表示形式:
from pyspark.ml.linalg import SparseVector, VectorUDT
import numpy as np
def to_sparse(c):
def to_sparse_(v):
if isinstance(v, SparseVector):
return v
vs = v.toArray()
nonzero = np.nonzero(vs)[0]
return SparseVector(v.size, nonzero, vs[nonzero])
return udf(to_sparse_, VectorUDT())(c)
Run Code Online (Sandbox Code Playgroud)
+---+-------------------------------------+
|id |features |
+---+-------------------------------------+
|0 |(5,[1],[2.0]) |
|5 |(5,[0,3],[5.0,1.0]) |
|1 |(5,[0,1,2,3],[1.0,1.0,3.0,1.0]) |
|3 |(5,[0,1],[3.0,1.0]) |
|2 |(5,[0,1,2,3,4],[2.0,1.0,3.0,1.0,1.0])|
|4 |(5,[0,1],[4.0,1.0]) |
+---+-------------------------------------+
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
7029 次 |
最近记录: |