Sel*_*lah 2 python etl dataframe pandas petl
我正在寻找pandas to_numeric()的布尔等价物我希望函数将列转换为True/False/nan,如果可能的话,如果没有抛出错误.
我的动机是我需要在数据集中自动识别和转换大约1000列的布尔列.我可以使用以下代码使用浮点数/整数执行类似的操作:
df = df_raw.apply(pd.to_numeric, errors='ignore')
Run Code Online (Sandbox Code Playgroud)
由于pd.to_numeric主要用于将字符串转换为数值,我将假设您要转换字符串布尔值的字符串.
考虑数据帧 df
df = pd.DataFrame([
['1', None, 'True'],
['False', 2, True]
])
print(df)
0 1 2
0 1 NaN True
1 False 2.0 True
Run Code Online (Sandbox Code Playgroud)
我的选择
这就是我的建议.在下面,我将其分解,试图解释发生了什么.
def try_eval2(x):
if type(x) is str:
try:
x = literal_eval(x)
except:
x = np.nan
if type(x) is not bool:
x = np.nan
return x
vals = df.values
v = vals.ravel()
a = np.array([try_eval2(x) for x in v.tolist()], dtype=object)
pd.DataFrame(a.reshape(vals.shape), df.index, df.columns)
0 1 2
0 NaN NaN True
1 False NaN True
Run Code Online (Sandbox Code Playgroud)
时间
你会注意到我提出的解决方案非常快
%%timeit
vals = df.values
v = vals.ravel()
a = np.array([try_eval2(x) for x in v.tolist()], dtype=object)
pd.DataFrame(a.reshape(vals.shape), df.index, df.columns)
10000 loops, best of 3: 149 µs per loop
%timeit df.astype(str).applymap(to_boolean)
1000 loops, best of 3: 1.28 ms per loop
%timeit df.astype(str).stack().map({'True':True, 'False':False}).unstack()
1000 loops, best of 3: 1.27 ms per loop
Run Code Online (Sandbox Code Playgroud)
步骤1
现在我将创建一个简单的函数,ast.literal_eval用于将字符串转换为值
from ast import literal_eval
def try_eval(x):
try:
x = literal_eval(x)
except:
pass
return x
Run Code Online (Sandbox Code Playgroud)
第2步
applymap使用我的新功能.它会看起来一样!
d1 = df.applymap(try_eval)
print(d1)
0 1 2
0 1 NaN True
1 False 2.0 True
Run Code Online (Sandbox Code Playgroud)
步骤3
使用where和applymap再次查找值的实际位置bool
d2 = d1.where(d1.applymap(type).eq(bool))
print(d2)
0 1 2
0 NaN NaN True
1 False NaN True
Run Code Online (Sandbox Code Playgroud)
步骤4
您可以删除所有列NaN
print(d2.dropna(1, 'all'))
0 2
0 NaN True
1 False True
Run Code Online (Sandbox Code Playgroud)
你需要replace在where哪里替换NaN所有不是boolean:
df = df.replace({'True':True,'False':False})
df = df.where(df.applymap(type) == bool)
Run Code Online (Sandbox Code Playgroud)
旧解决方案(非常慢):
您可以astype为字符串,如果一些布尔中df,applymap使用自定义功能和ast.literal_eval转换:
from ast import literal_eval
def to_boolean(x):
try:
x = literal_eval(x)
if type(x) == bool:
return x
else:
return np.nan
except:
x = np.nan
return x
print (df.astype(str).applymap(to_boolean))
#with borrowing sample from piRSquared
0 1 2
0 NaN NaN True
1 False NaN True
Run Code Online (Sandbox Code Playgroud)
时间:
In [76]: %timeit (jez(df))
1 loop, best of 3: 488 ms per loop
In [77]: %timeit (jez2(df))
1 loop, best of 3: 527 ms per loop
#piRSquared fastest solution
In [78]: %timeit (pir(df))
1 loop, best of 3: 5.42 s per loop
#maxu solution
In [79]: %timeit df.astype(str).stack().map({'True':True, 'False':False}).unstack()
1 loop, best of 3: 1.88 s per loop
#jezrael ols solution
In [80]: %timeit df.astype(str).applymap(to_boolean)
1 loop, best of 3: 13.3 s per loop
Run Code Online (Sandbox Code Playgroud)
时间代码:
df = pd.DataFrame([
['True', False, '1', 0, None, 5.2],
['False', True, '0', 1, 's', np.nan]])
#[20000 rows x 60 columns]
df = pd.concat([df]*10000).reset_index(drop=True)
df = pd.concat([df]*10, axis=1).reset_index(drop=True)
df.columns = pd.RangeIndex(len(df.columns))
#print (df)
Run Code Online (Sandbox Code Playgroud)
def to_boolean(x):
try:
x = literal_eval(x)
if type(x) == bool:
return x
else:
return np.nan
except:
x = np.nan
return x
def try_eval2(x):
if type(x) is str:
try:
x = literal_eval(x)
except:
x = np.nan
if type(x) is not bool:
x = np.nan
return x
Run Code Online (Sandbox Code Playgroud)
def pir(df):
vals = df.values
v = vals.ravel()
a = np.array([try_eval2(x) for x in v.tolist()], dtype=object)
df2 = pd.DataFrame(a.reshape(vals.shape), df.index, df.columns)
return (df2)
def jez(df):
df = df.replace({'True':True,'False':False})
df = df.where(df.applymap(type) == bool)
return (df)
def jez2(df):
df = df.replace({'True':True,'False':False})
df = df.where(df.applymap(type).eq(bool))
return (df)
Run Code Online (Sandbox Code Playgroud)