Mat*_*t D 3 machine-learning neural-network deep-learning tensorflow
我正在尝试使用Tensorflow实现具有整流线性单元和1024个隐藏节点的1隐藏层神经网络.
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
batch_size = 128
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
weights1 = tf.Variable(
tf.truncated_normal([image_size * image_size, 1024]))
biases1 = tf.Variable(tf.zeros([1024]))
weights2 = tf.Variable(
tf.truncated_normal([1024, num_labels]))
biases2 = tf.Variable(tf.zeros([num_labels]))
# Training computation.
logits = tf.matmul(tf.nn.relu(tf.matmul(tf_train_dataset, weights1) + biases1), weights2) + biases2
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(
tf.matmul(
tf.nn.relu(
tf.matmul(tf_valid_dataset, weights1)
+ biases1),
weights2) + biases2)
test_prediction = tf.nn.softmax(
tf.matmul(
tf.nn.relu(
tf.matmul(tf_test_dataset, weights1)
+ biases1),
weights2) + biases2)
num_steps = 3001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
Run Code Online (Sandbox Code Playgroud)
这是我得到的输出:
Initialized
Minibatch loss at step 0: 208.975021
Minibatch accuracy: 11.7%
Validation accuracy: 10.0%
Minibatch loss at step 500: 0.000000
Minibatch accuracy: 100.0%
Validation accuracy: 10.2%
Minibatch loss at step 1000: 0.000000
Minibatch accuracy: 100.0%
Validation accuracy: 14.6%
Minibatch loss at step 1500: 0.000000
Minibatch accuracy: 100.0%
Validation accuracy: 10.2%
Minibatch loss at step 2000: 0.000000
Minibatch accuracy: 100.0%
Validation accuracy: 17.7%
Minibatch loss at step 2500: 2.952326
Minibatch accuracy: 93.8%
Validation accuracy: 26.6%
Minibatch loss at step 3000: 0.000000
Minibatch accuracy: 100.0%
Validation accuracy: 17.5%
Test accuracy: 18.1%
Run Code Online (Sandbox Code Playgroud)
看起来它过度拟合了.它在训练数据上的准确率接近100%,但在验证和测试数据上只能达到约20%的准确率.
这是实现具有整流线性单元的1隐藏层神经网络的正确方法吗?如果是这样,我怎样才能提高准确度?
以下是一些可能提高准确性的建议:
首先,您的隐藏图层(大小为1024)似乎太大了.这可能会导致过度拟合.我会尝试将它减少到大约50-100左右,看看它是否会改善并从那里继续.
另外,关于这一行:
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
Run Code Online (Sandbox Code Playgroud)
0.5学习率可能太高,试着减少它(到0.01,0.001左右),看看会发生什么.最后,您也可以尝试使用tf.train.AdamOptimizer
而不是tf.train.GradientDescentOptimizer
,因为在许多情况下它表现更好.
归档时间: |
|
查看次数: |
662 次 |
最近记录: |