python pandas:groupby中2个日期之间的差异

Gui*_*ume 9 python group-by aggregate pandas

使用Python 3.6和Pandas 0.19.2:

我有一个DataFrame,包含用于事务的已解析日志文件.每一行都带有时间戳,包含一个transactionid,可以表示事务的开始或结束(因此每个transactionid有1行用于start,1行用于end).

每个终点线中还可以存在其他信息.

我想通过使用startdate减去结束日期来提取每个事务的持续时间,并保留其他信息.

样本输入:

import pandas as pd
import io
df = pd.read_csv(io.StringIO('''transactionid;event;datetime;info
1;START;2017-04-01 00:00:00;
1;END;2017-04-01 00:00:02;foo1
2;START;2017-04-01 00:00:02;
3;START;2017-04-01 00:00:02;
2;END;2017-04-01 00:00:03;foo2
4;START;2017-04-01 00:00:03;
3;END;2017-04-01 00:00:03;foo3
4;END;2017-04-01 00:00:04;foo4'''), sep=';', parse_dates=['datetime'])
Run Code Online (Sandbox Code Playgroud)

这给出了以下DataFrame:

   transactionid  event             datetime  info
0              1  START  2017-04-01 00:00:00   NaN
1              1    END  2017-04-01 00:00:02  foo1
2              2  START  2017-04-01 00:00:02   NaN
3              3  START  2017-04-01 00:00:02   NaN
4              2    END  2017-04-01 00:00:03  foo2
5              4  START  2017-04-01 00:00:03   NaN
6              3    END  2017-04-01 00:00:03  foo3
7              4    END  2017-04-01 00:00:04  foo4
Run Code Online (Sandbox Code Playgroud)

预期产量:

一个新的数据框,例如:

   transactionid           start_date             end_date  duration  info
0              1  2017-04-01 00:00:00  2017-04-01 00:00:02  00:00:02  foo1
1              2  2017-04-01 00:00:02  2017-04-01 00:00:03  00:00:01  foo2
2              3  2017-04-01 00:00:02  2017-04-01 00:00:03  00:00:01  foo3
3              4  2017-04-01 00:00:03  2017-04-01 00:00:04  00:00:01  foo4
Run Code Online (Sandbox Code Playgroud)

我尝试过的:

由于2个连续行并不总是与同一个事务相关,因此我将a .groupby(by='transactionid')应用于我的数据帧.我现在被困在试图根据我的需要"压扁"每个小组.

Max*_*axU 14

试试这个:

df.datetime = pd.to_datetime(df.datetime)

funcs = {
    'datetime':{
        'start_date':   'min',
        'end_date':     'max',
        'duration':     lambda x: x.max() - x.min(),
    },
    'info':             'last'
}

df.groupby(by='transactionid')['datetime','info'].agg(funcs).reset_index()
Run Code Online (Sandbox Code Playgroud)

结果:

In [103]: df.groupby(by='transactionid')['datetime','info'].agg(funcs).reset_index()
Out[103]:
   transactionid          start_date            end_date  duration  last
0              1 2017-04-01 00:00:00 2017-04-01 00:00:02  00:00:02  foo1
1              2 2017-04-01 00:00:02 2017-04-01 00:00:03  00:00:01  foo2
2              3 2017-04-01 00:00:02 2017-04-01 00:00:03  00:00:01  foo3
3              4 2017-04-01 00:00:03 2017-04-01 00:00:04  00:00:01  foo4
Run Code Online (Sandbox Code Playgroud)