jul*_*010 9 python time-series matplotlib pandas
我正在使用以下数据集,每小时计数(df):数据框有8784行(2016年,每小时).
我想看看是否有每日趋势(例如,如果早上时间有所增加.为此我想创建一个在x-上有一天中的小时(从0到24)的情节.轴上和y轴上的骑车者数量(如下图所示http://ofdataandscience.blogspot.co.uk/2013/03/capital-bikeshare-time-series-clustering.html).
我尝试了不同的方法pivot,resample并set_index用matplotlib绘制它,但没有成功.换句话说,我无法找到一种方法来总结某个时刻的每个观察结果,然后为每个工作日绘制那些观察结果
任何想法如何做到这一点?提前致谢!
jez*_*ael 11
我想你可以使用groupby由hour和weekday与合计sum(或可能mean),最后通过重塑unstack和DataFrame.plot:
df = df.groupby([df['Date'].dt.hour, 'weekday'])['Cyclists'].sum().unstack().plot()
Run Code Online (Sandbox Code Playgroud)
解决方案pivot_table:
df1 = df.pivot_table(index=df['Date'].dt.hour,
columns='weekday',
values='Cyclists',
aggfunc='sum').plot()
Run Code Online (Sandbox Code Playgroud)
样品:
N = 200
np.random.seed(100)
rng = pd.date_range('2016-01-01', periods=N, freq='H')
df = pd.DataFrame({'Date': rng, 'Cyclists': np.random.randint(100, size=N)})
df['weekday'] = df['Date'].dt.weekday_name
print (df.head())
Cyclists Date weekday
0 8 2016-01-01 00:00:00 Friday
1 24 2016-01-01 01:00:00 Friday
2 67 2016-01-01 02:00:00 Friday
3 87 2016-01-01 03:00:00 Friday
4 79 2016-01-01 04:00:00 Friday
Run Code Online (Sandbox Code Playgroud)
print (df.groupby([df['Date'].dt.hour, 'weekday'])['Cyclists'].sum().unstack())
weekday Friday Monday Saturday Sunday Thursday Tuesday Wednesday
Date
0 102 91 120 53 95 86 21
1 102 83 100 27 20 94 25
2 121 53 105 56 10 98 54
3 164 78 54 30 8 42 6
4 163 0 43 48 89 84 37
5 49 13 150 47 72 95 58
6 24 57 32 39 30 76 39
7 127 76 128 38 12 33 94
8 72 3 59 44 18 58 51
9 138 70 67 18 93 42 30
10 77 3 7 64 92 22 66
11 159 84 49 56 44 0 24
12 156 79 47 34 57 55 55
13 42 10 65 53 0 98 17
14 116 87 61 74 73 19 45
15 106 60 14 17 54 53 89
16 22 3 55 72 92 68 45
17 154 48 71 13 66 62 35
18 60 52 80 30 16 50 16
19 79 43 2 17 5 68 12
20 11 36 94 53 51 35 86
21 180 5 19 68 90 23 82
22 103 71 98 50 34 9 67
23 92 38 63 91 67 48 92
df.groupby([df['Date'].dt.hour, 'weekday'])['Cyclists'].sum().unstack().plot()
Run Code Online (Sandbox Code Playgroud)
编辑:
你也可以转换wekkday到categorical通过一周的名字列的正确soting:
names = [ 'Monday', 'Tuesday', 'Wednesday', 'Thursday','Friday', 'Saturday', 'Sunday']
df['weekday'] = df['weekday'].astype('category', categories=names, ordered=True)
df.groupby([df['Date'].dt.hour, 'weekday'])['Cyclists'].sum().unstack().plot()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
7123 次 |
| 最近记录: |