熊猫:计算每组行中的半径距离

Ale*_*346 2 python csv gis distance pandas

示例CSV如下所示:

 user_id  lat         lon
    1   19.111841   72.910729
    1   19.111342   72.908387
    2   19.111542   72.907387
    2   19.137815   72.914085
    2   19.119677   72.905081
    2   19.129677   72.905081
    3   19.319677   72.905081
    3   19.120217   72.907121
    4   19.420217   72.807121
    4   19.520217   73.307121
    5   19.319677   72.905081
    5   19.419677   72.805081
    5   19.629677   72.705081
    5   19.111860   72.911347
    5   19.111860   72.931346
    5   19.219677   72.605081
    6   19.319677   72.805082
    6   19.419677   72.905086
Run Code Online (Sandbox Code Playgroud)

我知道我可以使用hasrsine进行距离计算(而且python也有hasrsine包):

def haversine(lon1, lat1, lon2, lat2):
    """
    Calculate the great circle distance between two points 
    on the earth (specified in decimal degrees).
    Source: http://gis.stackexchange.com/a/56589/15183
    """
    # convert decimal degrees to radians 
    lon1, lat1, lon2, lat2 = map(math.radians, [lon1, lat1, lon2, lat2])
    # haversine formula 
    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = math.sin(dlat/2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon/2)**2
    c = 2 * math.asin(math.sqrt(a)) 
    km = 6371 * c
    return km
Run Code Online (Sandbox Code Playgroud)

但是,我只想计算相同id内的距离.所以预期的答案是这样的:

user_id  lat         lon    result
    1   19.111841   72.910729   NaN
    1   19.111342   72.908387   xx*
    2   19.111542   72.907387   NaN
    2   19.137815   72.914085   xx
    2   19.119677   72.905081   xx
    2   19.129677   72.905081   xx
    3   19.319677   72.905081   NaN
    3   19.120217   72.907121   xx
    4   19.420217   72.807121   NaN
    4   19.520217   73.307121   xx
    5   19.319677   72.905081   NaN
    5   19.419677   72.805081   xx
    5   19.629677   72.705081   xx
    5   19.111860   72.911347   xx
    5   19.111860   72.931346   xx
    5   19.219677   72.605081   xx
    6   19.319677   72.805082   NaN
    6   19.419677   72.905086   xx
Run Code Online (Sandbox Code Playgroud)

*:xx是以km为单位的距离数.

我怎样才能做到这一点?

PS 我正在使用熊猫

Max*_*axU 8

试试这种方法:

import pandas as pd
import numpy as np

# parse CSV to DataFrame. You may want to specify the separator (`sep='...'`)
df = pd.read_csv('/path/to/file.csv')

# vectorized haversine function
def haversine(lat1, lon1, lat2, lon2, to_radians=True, earth_radius=6371):
    """
    slightly modified version: of http://stackoverflow.com/a/29546836/2901002

    Calculate the great circle distance between two points
    on the earth (specified in decimal degrees or in radians)

    All (lat, lon) coordinates must have numeric dtypes and be of equal length.

    """
    if to_radians:
        lat1, lon1, lat2, lon2 = np.radians([lat1, lon1, lat2, lon2])

    a = np.sin((lat2-lat1)/2.0)**2 + \
        np.cos(lat1) * np.cos(lat2) * np.sin((lon2-lon1)/2.0)**2

    return earth_radius * 2 * np.arcsin(np.sqrt(a))
Run Code Online (Sandbox Code Playgroud)

现在我们可以计算出属于同一个id(组)的坐标之间的距离:

df['dist'] = \
    np.concatenate(df.groupby('id')
                     .apply(lambda x: haversine(x['lat'], x['lon'],
                                                x['lat'].shift(), x['lon'].shift())).values)
Run Code Online (Sandbox Code Playgroud)

结果:

In [105]: df
Out[105]:
    id        lat        lon       dist
0    1  19.111841  72.910729        NaN
1    1  19.111342  72.908387   0.252243
2    2  19.111542  72.907387        NaN
3    2  19.137815  72.914085   3.004976
4    2  19.119677  72.905081   2.227658
5    2  19.129677  72.905081   1.111949
6    3  19.319677  72.905081        NaN
7    3  19.120217  72.907121  22.179974
8    4  19.420217  72.807121        NaN
9    4  19.520217  73.307121  53.584504
10   5  19.319677  72.905081        NaN
11   5  19.419677  72.805081  15.286775
12   5  19.629677  72.705081  25.594890
13   5  19.111860  72.911347  61.509917
14   5  19.111860  72.931346   2.101215
15   5  19.219677  72.605081  36.304756
16   6  19.319677  72.805082        NaN
17   6  19.419677  72.905086  15.287063
Run Code Online (Sandbox Code Playgroud)