jub*_*ins 3 python machine-learning feature-selection scikit-learn logistic-regression
我正在研究UCI乳腺癌数据集,并试图找到权重最高的前3个功能.我能够找到所有功能的重量,logmodel.coef_
但我怎样才能获得功能名称?下面是我的代码,输出和数据集(从scikit导入).
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
cancer.data, cancer.target, stratify=cancer.target, random_state=42)
logmodel = LogisticRegression(C=1.0).fit(X_train, y_train)
logmodel.coef_[0]
Run Code Online (Sandbox Code Playgroud)
上面的代码输出权重数组.使用这些权重如何获取关联功能名称?
Output:
array([ 1.90876683e+00, 9.98788148e-02, -7.65567571e-02,
1.30875965e-03, -1.36948317e-01, -3.86693503e-01,
-5.71948682e-01, -2.83323656e-01, -2.23813863e-01,
-3.50526844e-02, 3.04455316e-03, 1.25223693e+00,
9.49523571e-02, -9.63789785e-02, -1.32044174e-02,
-2.43125981e-02, -5.86034313e-02, -3.35199227e-02,
-4.10795998e-02, 1.53205924e-03, 1.24707244e+00,
-3.19709151e-01, -9.61881472e-02, -2.66335879e-02,
-2.44041661e-01, -1.24420873e+00, -1.58319440e+00,
-5.78354663e-01, -6.80060645e-01, -1.30760323e-01])
Run Code Online (Sandbox Code Playgroud)
谢谢.我真的很感激任何帮助.
这将完成工作:
import numpy as np
coefs=logmodel.coef_[0]
top_three = np.argpartition(coefs, -3)[-3:]
print(cancer.feature_names[top_three])
Run Code Online (Sandbox Code Playgroud)
这打印
['worst radius' 'texture error' 'mean radius']
Run Code Online (Sandbox Code Playgroud)
请注意,这些功能是前三名,但它们不一定要在它们之间进行排序.如果您希望对它们进行排序,您可以:
import numpy as np
coefs=logmodel.coef_[0]
top_three = np.argpartition(coefs, -3)[-3:]
top_three_sorted=top_three[np.argsort(coefs[top_three])]
print(cancer.feature_names[top_three_sorted])
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
4354 次 |
最近记录: |