我有多个传感器按月和年的传感器数据:
import pandas as pd
df = pd.DataFrame([
['A', 'Jan', 2015, 13],
['A', 'Feb', 2015, 10],
['A', 'Jan', 2016, 12],
['A', 'Feb', 2016, 11],
['B', 'Jan', 2015, 7],
['B', 'Feb', 2015, 8],
['B', 'Jan', 2016, 4],
['B', 'Feb', 2016, 9]
], columns = ['sensor', 'month', 'year', 'value'])
In [2]: df
Out[2]:
sensor month year value
0 A Jan 2015 13
1 A Feb 2015 10
2 A Jan 2016 12
3 A Feb 2016 11
4 B Jan 2015 7
5 B Feb 2015 8
6 B Jan 2016 4
7 B Feb 2016 9
Run Code Online (Sandbox Code Playgroud)
我使用 groupby 计算了每个传感器和月份的平均值:
month_avg = df.groupby(['sensor', 'month']).mean()['value']
In [3]: month_avg
Out[3]:
sensor month
A Feb 10.5
Jan 12.5
B Feb 8.5
Jan 5.5
Run Code Online (Sandbox Code Playgroud)
现在我想添加一列来df
显示与月平均值的差异,如下所示:
sensor month year value diff_from_avg
0 A Jan 2015 13 1.5
1 A Feb 2015 10 2.5
2 A Jan 2016 12 0.5
3 A Feb 2016 11 0.5
4 B Jan 2015 7 2.5
5 B Feb 2015 8 0.5
6 B Jan 2016 4 -1.5
7 B Feb 2016 9 -0.5
Run Code Online (Sandbox Code Playgroud)
我尝试了多重索引df
,avgs_by_month
类似地尝试了简单的减法,但没有好处:
df = df.set_index(['sensor', 'month'])
df['diff_from_avg'] = month_avg - df.value
Run Code Online (Sandbox Code Playgroud)
感谢您的任何建议。
assign
新专栏transform
diff_from_avg=df.value - df.groupby(['sensor', 'month']).value.transform('mean')
df.assign(diff_from_avg=diff_from_avg)
sensor month year value diff_from_avg
0 A Jan 2015 13 0.5
1 A Feb 2015 10 -0.5
2 A Jan 2016 12 -0.5
3 A Feb 2016 11 0.5
4 B Jan 2015 7 1.5
5 B Feb 2015 8 -0.5
6 B Jan 2016 4 -1.5
7 B Feb 2016 9 0.5
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1921 次 |
最近记录: |