yuh*_*ngd 3 python counter time-complexity
我使用以下代码来实现一个函数,该函数在字符串s中查找字符串p的所有字符串.
class Solution(object):
def findAnagrams(self, s, p):
"""
:type s: str
:type p: str
:rtype: List[int]
"""
ans = list()
pcnt = collections.Counter(p)
for i in range(len(s)):
if collections.Counter(s[i:i+len(p)]) == pcnt:
ans.append(i)
return ans
Run Code Online (Sandbox Code Playgroud)
当在大长度输入字符串s上运行时,它在在线代码测试系统中给出了"超出时间限制"的错误.但是,以下代码将不会出现此类问题:
class Solution(object):
def findAnagrams(self, s, p):
"""
:type s: str
:type p: str
:rtype: List[int]
"""
ls, lp = len(s), len(p)
cp = collections.Counter(p)
cs = collections.Counter()
ans = []
for i in range(ls):
cs[s[i]] += 1
if i >= lp:
cs[s[i - lp]] -= 1
if cs[s[i - lp]] == 0:
del cs[s[i - lp]]
if cs == cp:
ans.append(i - lp + 1)
return ans
Run Code Online (Sandbox Code Playgroud)
我能知道为什么吗?似乎两种解决方案都使用两个最大尺寸为len(p)的计数器?
要了解为什么某些代码比其他代码运行得更快,您应该对其进行分析.在Python中,开始分析的最简单方法是运行:
python -m cProfile <script.py>
Run Code Online (Sandbox Code Playgroud)
在我的例子中,我写了一个简单的脚本,调用慢速解决方案或快速解决方案:
# Pasted code from original question.
# Also renamed the slow version to `SlowSolution` and the fast version to `FastSolution`.
...
# solution = FastSolution()
solution = SlowSolution()
print(solution.findAnagrams('abcdefg' + 'a' * 10000, 'gfedcba' + 'a' * 10000))
Run Code Online (Sandbox Code Playgroud)
然后我用SlowSolution和运行脚本FastSolution.以下是我的探查器结果的输出SlowSolution:
$ python -m cProfile counter.py
[0]
100204 function calls (100192 primitive calls) in 2.557 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
10008 0.015 0.000 2.538 0.000 __init__.py:516(__init__)
10008 0.009 0.000 2.522 0.000 __init__.py:585(update)
7 0.000 0.000 0.000 0.000 _collections_abc.py:392(__subclasshook__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:16(__init__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:20(__enter__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:26(__exit__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:36(__init__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:52(_commit_removals)
9 0.000 0.000 0.000 0.000 _weakrefset.py:58(__iter__)
20022 0.007 0.000 0.007 0.000 _weakrefset.py:70(__contains__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:81(add)
10008 0.010 0.000 0.017 0.000 abc.py:178(__instancecheck__)
7/1 0.000 0.000 0.000 0.000 abc.py:194(__subclasscheck__)
1 0.000 0.000 2.557 2.557 counter.py:1(<module>)
1 0.000 0.000 0.000 0.000 counter.py:17(FastSolution)
1 0.000 0.000 0.000 0.000 counter.py:3(SlowSolution)
1 0.017 0.017 2.556 2.556 counter.py:4(findAnagrams)
10008 2.490 0.000 2.490 0.000 {built-in method _collections._count_elements}
2 0.000 0.000 0.000 0.000 {built-in method builtins.__build_class__}
1 0.000 0.000 2.557 2.557 {built-in method builtins.exec}
7 0.000 0.000 0.000 0.000 {built-in method builtins.getattr}
10008 0.005 0.000 0.022 0.000 {built-in method builtins.isinstance}
8/2 0.000 0.000 0.000 0.000 {built-in method builtins.issubclass}
30024 0.003 0.000 0.003 0.000 {built-in method builtins.len}
1 0.000 0.000 0.000 0.000 {built-in method builtins.print}
7 0.000 0.000 0.000 0.000 {method '__subclasses__' of 'type' objects}
14 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects}
1 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
7 0.000 0.000 0.000 0.000 {method 'remove' of 'set' objects}
Run Code Online (Sandbox Code Playgroud)
并且FastSolution:
$ python -m cProfile counter.py
[0]
146 function calls (134 primitive calls) in 0.005 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
2 0.000 0.000 0.001 0.000 __init__.py:516(__init__)
7 0.000 0.000 0.000 0.000 __init__.py:536(__missing__)
2 0.000 0.000 0.001 0.000 __init__.py:585(update)
7 0.000 0.000 0.000 0.000 _collections_abc.py:392(__subclasshook__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:16(__init__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:20(__enter__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:26(__exit__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:36(__init__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:52(_commit_removals)
9 0.000 0.000 0.000 0.000 _weakrefset.py:58(__iter__)
8 0.000 0.000 0.000 0.000 _weakrefset.py:70(__contains__)
7 0.000 0.000 0.000 0.000 _weakrefset.py:81(add)
1 0.000 0.000 0.000 0.000 abc.py:178(__instancecheck__)
7/1 0.000 0.000 0.000 0.000 abc.py:194(__subclasscheck__)
1 0.000 0.000 0.005 0.005 counter.py:1(<module>)
1 0.000 0.000 0.000 0.000 counter.py:17(FastSolution)
1 0.004 0.004 0.005 0.005 counter.py:18(findAnagrams)
1 0.000 0.000 0.000 0.000 counter.py:3(SlowSolution)
1 0.001 0.001 0.001 0.001 {built-in method _collections._count_elements}
2 0.000 0.000 0.000 0.000 {built-in method builtins.__build_class__}
1 0.000 0.000 0.005 0.005 {built-in method builtins.exec}
7 0.000 0.000 0.000 0.000 {built-in method builtins.getattr}
1 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance}
8/2 0.000 0.000 0.000 0.000 {built-in method builtins.issubclass}
6 0.000 0.000 0.000 0.000 {built-in method builtins.len}
1 0.000 0.000 0.000 0.000 {built-in method builtins.print}
7 0.000 0.000 0.000 0.000 {method '__subclasses__' of 'type' objects}
14 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects}
1 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
7 0.000 0.000 0.000 0.000 {method 'remove' of 'set' objects}
Run Code Online (Sandbox Code Playgroud)
一开始读取的输出有点奇怪,但我们真的对这个tottime专栏很感兴趣.这告诉我们在特定功能中花费了多少时间.
正如您所看到的,该脚本几乎花费了所有时间{built-in method _collections._count_elements}.这是Counter我们可以推断的内部方法,每次创建计数器时都会调用它(如collections.Counter(p)).
为了使代码更快,您应该调用collections.Counter(...)更少的次数和/或使用更短的字符串.在慢速版本中,您需要计算len(p)字符len(s)时间.它的运行时间O(sp)是二次的,并解释为什么它对大输入这么慢.
另一方面,更快的解决方案只计算s一次的每个字符,从而使其具有运行时间O(s + p).这速度更快,并且可以通过更大的输入进行扩展.
有关Python中的性能分析的更多信息,请参阅如何配置python脚本?