Psy*_*ust 5 python parallel-processing python-2.7 python-multiprocessing
我有两个独立的功能.每个都需要很长时间才能执行.
def function1(arg):
do_some_stuff_here
return result1
def function2(arg1, arg2, arg3):
do_some_stuff_here
return result2
Run Code Online (Sandbox Code Playgroud)
我想并行启动它们,得到它们的结果(知道哪个是哪个)并在之后处理结果.根据我的理解,多处理比Python 2.7中的线程(GIL相关问题)更有效.但是我有点迷失是否更好地使用Process,Pool或Queue以及如何以正确的pythonic方式为我的用例实现它们.
任何帮助赞赏;)
vsr*_*293 11
首先,Process,Pool和Queue都有不同的用例.
Process用于通过创建Process对象来生成进程.
from multiprocessing import Process
def method1():
print "in method1"
print "in method1"
def method2():
print "in method2"
print "in method2"
p1 = Process(target=method1) # create a process object p1
p1.start() # starts the process p1
p2 = Process(target=method2)
p2.start()
Run Code Online (Sandbox Code Playgroud)
池用于并行化多个输入值的函数执行.
from multiprocessing import Pool
def method1(x):
print x
print x**2
return x**2
p = Pool(3)
result = p.map(method1, [1,4,9])
print result # prints [1, 16, 81]
Run Code Online (Sandbox Code Playgroud)
队列用于在进程之间进行通信.
from multiprocessing import Process, Queue
def method1(x, l1):
print "in method1"
print "in method1"
l1.put(x**2)
return x
def method2(x, l2):
print "in method2"
print "in method2"
l2.put(x**3)
return x
l1 = Queue()
p1 = Process(target=method1, args=(4, l1, ))
l2 = Queue()
p2 = Process(target=method2, args=(2, l2, ))
p1.start()
p2.start()
print l1.get() # prints 16
print l2.get() # prints 8
Run Code Online (Sandbox Code Playgroud)
现在,对于您的情况,您可以使用Process&Queue(第三种方法)或者您可以操作池方法(下面)
import itertools
from multiprocessing import Pool
import sys
def method1(x):
print x
print x**2
return x**2
def method2(x):
print x
print x**3
return x**3
def unzip_func(a, b):
return a, b
def distributor(option_args):
option, args = unzip_func(*option_args) # unzip option and args
attr_name = "method" + str(option)
# creating attr_name depending on option argument
value = getattr(sys.modules[__name__], attr_name)(args)
# call the function with name 'attr_name' with argument args
return value
option_list = [1,2] # for selecting the method number
args_list = [4,2]
# list of arg for the corresponding method, (argument 4 is for method1)
p = Pool(3) # creating pool of 3 processes
result = p.map(distributor, itertools.izip(option_list, args_list))
# calling the distributor function with args zipped as (option1, arg1), (option2, arg2) by itertools package
print result # prints [16,8]
Run Code Online (Sandbox Code Playgroud)
希望这可以帮助.
| 归档时间: |
|
| 查看次数: |
3853 次 |
| 最近记录: |