vin*_*nt 5 python opencv image-processing padding
我有一个包含 100, 000 张不同大小图像的数据集。
(36,77), (56,100), (89,14), (35,67), (78,34), (90,65),(96,38).......
我想为这些图像添加填充,以使它们具有相同的形状。为此,我遍历整个数据集并获取max_width和max_height,然后将图像制作成这个大小。在此示例中,例如max_height= 96
和max_width= 100
。所以我的图像将具有 (96,100) 的所有形状。但是我得到了不同的形状:
(96, 100, 3)
(97, 101, 3)
(97, 100, 3)
(96, 101, 3)
(96, 100, 3)
(97, 100, 3)
(97, 101, 3)
(97, 100, 3)
(97, 100, 3)
(96, 101, 3)
(97, 101, 3)
(96, 101, 3)
(96, 100, 3)
(97, 100, 3)
(96, 101, 3)
Run Code Online (Sandbox Code Playgroud)
我的代码有什么问题
from __future__ import division
import cv2
import numpy as np
import csv
import os
import pandas as pd
import glob
from matplotlib import pyplot as plt
def max_width_height(path):
os.chdir(path)
WIDTH=[]
HEIGHT=[]
images_name = glob.glob("*.png")
set_img = set([x.rsplit('.', 1)[0] for x in images_name])
for img in set_img:
img_cv = cv2.imread(path+'/'+img+'.png')
h=img_cv.shape[0]
w=img_cv.shape[1]
WIDTH.append(w)
HEIGHT.append(h)
max_width=max(WIDTH)
max_height=max(HEIGHT)
return max_height,max_width
def add_padding(max_height,max_width):
path_char = '/cropped_images'
output = 'dataset/'
abby_label = []
reference = []
os.chdir(path_char)
img_char= glob.glob("*.png")
set_img_char = set([x.rsplit('.', 1)[0] for x in img_char])
images = []
size= []
for img in img_char:
img_cv = cv2.imread(path_char+'/'+img)
h,w=img_cv.shape[0:2]
width_diff=max_width-w
height_diff=max_height-h
left= width_diff/2
right=width_diff/2
top=height_diff/2
bottom=height_diff/2
if isinstance(left,float):
left=int(left)
right=left+1
if isinstance(top,float):
top=int(top)
bottom=top+1
white_pixels = [255, 255, 255]
black_pixels = [0, 0, 0]
constant = cv2.copyMakeBorder(img_cv,top,left,right,bottom, cv2.BORDER_CONSTANT, value=white_pixels)
cv2.imwrite(output+img,constant)
size.append(constant.shape)
constant2 = cv2.copyMakeBorder(img_cv,top,left,right,bottom, cv2.BORDER_CONSTANT, value=black_pixels)
cv2.imwrite(output+img,constant2)
label, sep,rest = img.partition('_')
abby_label.append(label)
reference.append(rest)
df = pd.DataFrame({'abby_label': abby_label, 'reference': reference})
df.to_csv('abby_labels.csv')
df2=pd.DataFrame({'dimension':size})
df2.to_csv('dimension.csv')
h,w=max_width_height(path)
print(h,w)
x=add_padding(h,w)
Run Code Online (Sandbox Code Playgroud)
问题就在这里:
left= width_diff/2
right=width_diff/2
top=height_diff/2
bottom=height_diff/2
Run Code Online (Sandbox Code Playgroud)
这将导致最终宽度或高度不同,具体取决于 width_diff 或 height_diff 是否能被 2 整除。您已经实现了一个解决方法,但这只适用于 Python 3,而您显然使用的是 Python 2。
您可以通过以下方式修复此问题:
left=width_diff/2
right=width_diff - left
top=height_diff/2
bottom=height_diff - top
Run Code Online (Sandbox Code Playgroud)
通过这种方式,您将确保
请注意,这特别适用于 Python 2,您可能有兴趣阅读Python integer 除法产生 float。我的建议是使用Floor Division,这样你的代码就不易受到 Python 2 和 Python 3 差异的影响。
left=width_diff//2
right=width_diff - left
top=height_diff//2
bottom=height_diff - top
Run Code Online (Sandbox Code Playgroud)