Yel*_*low 17 python algorithm hierarchical-clustering
我正在尝试实现Rank-Order Clustering,这是从头开始的文章(这是一种凝聚聚类)算法的链接.我已经阅读了这篇论文(很多次)并且我有一个正在运行的实现,尽管它比我预期的要慢很多.
这是我的Github 的链接,其中包含下载和运行Jupyter Notebook的说明.
算法:
算法1基于秩序距离的聚类
输入:
N个面,秩 - 顺序距离阈值 t .
输出:
集群集C和"未分组"集群 C un.
1: 通过让每个面都是单个元素簇来初始化簇C = { C 1,C 2,... C N }
.
2:重复
3: 为所有一对Ç Ĵ和Ç 我在Ç 做
4:计算距离d - [R ( Ç 我,Ç Ĵ)由(4)和 d Ñ(Ç 我,Ç Ĵ通过)(5).
5: 如果 d - [R (Ç 我,Ç Ĵ)< 吨和d Ñ(Ç 我,Ç Ĵ)<1 则
6:记⟨ Ç 我,Ç Ĵ ⟩作为候选合并对.
7: 结束如果
8: 结束
9:在所有候选合并对上进行"传递"合并.
(例如,Ç 我,Ç Ĵ,Ç ķ被合并
如果⟨ Ç 我,Ç Ĵ ⟩和⟨ Ç Ĵ,Ç ķ ⟩是候选合并对.)
10:更新Ç由簇之间和绝对距离(3).
11:直到没有合并发生
12:将C中的所有单元素集群移动到"未分组"的面集群C un.
13:返回C和C un.
我的实施:
我已经定义了一个Cluster这样的类:
class Cluster:
def __init__(self):
self.faces = list()
self.absolute_distance_neighbours = None
Run Code Online (Sandbox Code Playgroud)
Face像这样的一个类:
class Face:
def __init__(self, embedding):
self.embedding = embedding # a point in 128 dimensional space
self.absolute_distance_neighbours = None
Run Code Online (Sandbox Code Playgroud)
我还实现了查找等级距离(D^R(C_i, C_j))和使用的归一化距离(D^N(C_i, C_j)),step 4因此可以认为这些是理所当然的.
这是我在两个集群之间找到最接近的绝对距离的实现:
def find_nearest_distance_between_clusters(cluster1, cluster2):
nearest_distance = sys.float_info.max
for face1 in cluster1.faces:
for face2 in cluster2.faces:
distance = np.linalg.norm(face1.embedding - face2.embedding, ord = 1)
if distance < nearest_distance:
nearest_distance = distance
# If there is a distance of 0 then there is no need to continue
if distance == 0:
return(0)
return(nearest_distance)
def assign_absolute_distance_neighbours_for_clusters(clusters, N = 20):
for i, cluster1 in enumerate(clusters):
nearest_neighbours = []
for j, cluster2 in enumerate(clusters):
distance = find_nearest_distance_between_clusters(cluster1, cluster2)
neighbour = Neighbour(cluster2, distance)
nearest_neighbours.append(neighbour)
nearest_neighbours.sort(key = lambda x: x.distance)
# take only the top N neighbours
cluster1.absolute_distance_neighbours = nearest_neighbours[0:N]
Run Code Online (Sandbox Code Playgroud)
这是我的秩序聚类算法的实现(假设执行find_normalized_distance_between_clusters和find_rank_order_distance_between_clusters正确):
import networkx as nx
def find_clusters(faces):
clusters = initial_cluster_creation(faces) # makes each face a cluster
assign_absolute_distance_neighbours_for_clusters(clusters)
t = 14 # threshold number for rank-order clustering
prev_cluster_number = len(clusters)
num_created_clusters = prev_cluster_number
is_initialized = False
while (not is_initialized) or (num_created_clusters):
print("Number of clusters in this iteration: {}".format(len(clusters)))
G = nx.Graph()
for cluster in clusters:
G.add_node(cluster)
processed_pairs = 0
# Find the candidate merging pairs
for i, cluster1 in enumerate(clusters):
# Only get the top 20 nearest neighbours for each cluster
for j, cluster2 in enumerate([neighbour.entity for neighbour in \
cluster1.absolute_distance_neighbours]):
processed_pairs += 1
print("Processed {}/{} pairs".format(processed_pairs, len(clusters) * 20), end="\r")
# No need to merge with yourself
if cluster1 is cluster2:
continue
else:
normalized_distance = find_normalized_distance_between_clusters(cluster1, cluster2)
if (normalized_distance >= 1):
continue
rank_order_distance = find_rank_order_distance_between_clusters(cluster1, cluster2)
if (rank_order_distance >= t):
continue
G.add_edge(cluster1, cluster2) # add an edge to denote that these two clusters are to be merged
# Create the new clusters
clusters = []
# Note here that nx.connected_components(G) are
# the clusters that are connected
for _clusters in nx.connected_components(G):
new_cluster = Cluster()
for cluster in _clusters:
for face in cluster.faces:
new_cluster.faces.append(face)
clusters.append(new_cluster)
current_cluster_number = len(clusters)
num_created_clusters = prev_cluster_number - current_cluster_number
prev_cluster_number = current_cluster_number
# Recalculate the distance between clusters (this is what is taking a long time)
assign_absolute_distance_neighbours_for_clusters(clusters)
is_initialized = True
# Now that the clusters have been created, separate them into clusters that have one face
# and clusters that have more than one face
unmatched_clusters = []
matched_clusters = []
for cluster in clusters:
if len(cluster.faces) == 1:
unmatched_clusters.append(cluster)
else:
matched_clusters.append(cluster)
matched_clusters.sort(key = lambda x: len(x.faces), reverse = True)
return(matched_clusters, unmatched_clusters)
Run Code Online (Sandbox Code Playgroud)
问题:
究其原因,性能下降是由于step 10: Update C and absolute distance between clusters by (3)那里(3)是:
这是C_i (cluster i)和中所有面之间的最小L1范数距离C_j (cluster j)
合并簇之后
因为每次我找到候选合并对时,我必须重新计算新创建的簇之间的绝对距离steps 3 - 8.我基本上必须为所有创建的集群执行嵌套for循环,然后使用ANOTHER嵌套for循环来查找具有最近距离的两个面.之后,我仍然要按最近距离对邻居进行排序!
我认为这是错误的方法,因为我已经看过OpenBR,它也实现了相同的Rank-Order聚类算法,我希望它在方法名称下:
Clusters br::ClusterGraph(Neighborhood neighborhood, float aggressiveness, const QString &csv)
虽然我不熟悉C++,但我很确定他们不会重新计算群集之间的绝对距离,这让我相信这是我错误实现的算法的一部分.
此外,在他们的方法声明的顶部,评论说他们已经预先计算了一个kNN图,这是有意义的,因为当我重新计算集群之间的绝对距离时,我正在做我之前做过的大量计算.我认为关键是为集群预先计算kNN图,尽管这是我坚持的部分.我想不出如何实现数据结构,以便每次合并时都不必重新计算簇的绝对距离.
从高层次来看,这也是 OpenBR 所做的,需要的是一个集群 ID 的查找表 -> 集群对象,从中生成新的集群列表,而无需重新计算。
可以在OpenBR 上的本节中从 ID 查找表中查看新集群是在哪里生成的。
对于您的代码,需要为每个Cluster对象添加一个 ID,整数可能最适合内存使用。然后更新合并代码以创建要合并的索引列表,findClusters并从现有集群索引创建新的集群列表。然后合并并更新邻居的索引。
最后一步,邻居索引合并可以在 OpenBR 上看到。
关键部分是合并时不会创建新的簇,并且不会重新计算它们的距离。仅根据现有集群对象更新索引并合并其相邻距离。