Reu*_* L. 3 python pandas feature-engineering
因此,我希望将两组功能进行分类(分类),然后合并以创建新功能。它与将坐标分类为地图上的网格一样。
问题在于要素的分布不均匀,并且pandas.qcut()在对两个要素/坐标进行装仓(如时)时,我想使用分位数。
是否有比同时qcut()使用两个功能和然后将结果标签串联更好的方法?
创建一个笛卡尔积。
考虑数据框 df
df = pd.DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20)))
A B
0 0.538186 0.038985
1 0.185523 0.438329
2 0.652151 0.067359
3 0.746060 0.774688
4 0.373741 0.009526
5 0.603536 0.149733
6 0.775801 0.585309
7 0.091238 0.811828
8 0.504035 0.639003
9 0.671320 0.132974
10 0.619939 0.883372
11 0.301644 0.882258
12 0.956463 0.391942
13 0.702457 0.099619
14 0.367810 0.071612
15 0.454935 0.651631
16 0.882029 0.015642
17 0.880251 0.348386
18 0.496250 0.606346
19 0.805688 0.401578
Run Code Online (Sandbox Code Playgroud)
我们可以创建新的分类 pd.qcut
d1 = df.assign(
A_cut=pd.qcut(df.A, 2, labels=[1, 2]),
B_cut=pd.qcut(df.B, 2, labels=list('ab'))
)
A B A_cut B_cut
0 0.538186 0.038985 1 a
1 0.185523 0.438329 1 b
2 0.652151 0.067359 2 a
3 0.746060 0.774688 2 b
4 0.373741 0.009526 1 a
5 0.603536 0.149733 1 a
6 0.775801 0.585309 2 b
7 0.091238 0.811828 1 b
8 0.504035 0.639003 1 b
9 0.671320 0.132974 2 a
10 0.619939 0.883372 2 b
11 0.301644 0.882258 1 b
12 0.956463 0.391942 2 a
13 0.702457 0.099619 2 a
14 0.367810 0.071612 1 a
15 0.454935 0.651631 1 b
16 0.882029 0.015642 2 a
17 0.880251 0.348386 2 a
18 0.496250 0.606346 1 b
19 0.805688 0.401578 2 b
Run Code Online (Sandbox Code Playgroud)
您可以使用元组创建笛卡尔乘积
d2 = d1.assign(cartesian=pd.Categorical(d1.filter(regex='_cut').apply(tuple, 1)))
print(d2)
A B A_cut B_cut cartesian
0 0.538186 0.038985 1 a (1, a)
1 0.185523 0.438329 1 b (1, b)
2 0.652151 0.067359 2 a (2, a)
3 0.746060 0.774688 2 b (2, b)
4 0.373741 0.009526 1 a (1, a)
5 0.603536 0.149733 1 a (1, a)
6 0.775801 0.585309 2 b (2, b)
7 0.091238 0.811828 1 b (1, b)
8 0.504035 0.639003 1 b (1, b)
9 0.671320 0.132974 2 a (2, a)
10 0.619939 0.883372 2 b (2, b)
11 0.301644 0.882258 1 b (1, b)
12 0.956463 0.391942 2 a (2, a)
13 0.702457 0.099619 2 a (2, a)
14 0.367810 0.071612 1 a (1, a)
15 0.454935 0.651631 1 b (1, b)
16 0.882029 0.015642 2 a (2, a)
17 0.880251 0.348386 2 a (2, a)
18 0.496250 0.606346 1 b (1, b)
19 0.805688 0.401578 2 b (2, b)
Run Code Online (Sandbox Code Playgroud)
如果您愿意,甚至可以为他们声明订购。
| 归档时间: |
|
| 查看次数: |
1438 次 |
| 最近记录: |