pro*_*tti 51 python text-classification keras keras-layer
我试图用一层构建一个CNN,但我有一些问题.确实,编译器说我
ValueError:检查模型输入时出错:预期conv1d_1_input具有3个维度,但是具有形状的数组(569,30)
这是代码
import numpy
from keras.models import Sequential
from keras.layers.convolutional import Conv1D
numpy.random.seed(7)
datasetTraining = numpy.loadtxt("CancerAdapter.csv",delimiter=",")
X = datasetTraining[:,1:31]
Y = datasetTraining[:,0]
datasetTesting = numpy.loadtxt("CancereEvaluation.csv",delimiter=",")
X_test = datasetTraining[:,1:31]
Y_test = datasetTraining[:,0]
model = Sequential()
model.add(Conv1D(2,2,activation='relu',input_shape=X.shape))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, Y, epochs=150, batch_size=5)
scores = model.evaluate(X_test, Y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
Run Code Online (Sandbox Code Playgroud)
ors*_*ady 101
TD; LR你需要重塑你的数据有一个空间的尺寸Conv1d是有道理的:
X = np.expand_dims(X, axis=2) # reshape (569, 30) to (569, 30, 1)
# now input can be set as
model.add(Conv1D(2,2,activation='relu',input_shape=(30, 1))
Run Code Online (Sandbox Code Playgroud)
基本上重塑一个如下所示的数据集:
features
.8, .1, .3
.2, .4, .6
.7, .2, .1
Run Code Online (Sandbox Code Playgroud)
至:
[[.8
.1
.3],
[.2,
.4,
.6
],
[.3,
.6
.1]]
Run Code Online (Sandbox Code Playgroud)
说明和例子
通常,卷积在空间维度上起作用.内核在产生张量的维度上"卷积".在Conv1D的情况下,内核通过每个示例的"步骤"维度传递.
您将看到在NLP中使用的Conv1D,其中steps是句子中的单词数(填充到某个固定的最大长度).这些单词可能被编码为长度为4的向量.
这是一个例句:
jack .1 .3 -.52 |
is .05 .8, -.7 |<--- kernel is `convolving` along this dimension.
a .5 .31 -.2 |
boy .5 .8 -.4 \|/
Run Code Online (Sandbox Code Playgroud)
在这种情况下我们将输入设置为conv的方式:
maxlen = 4
input_dim = 3
model.add(Conv1D(2,2,activation='relu',input_shape=(maxlen, input_dim))
Run Code Online (Sandbox Code Playgroud)
在您的情况下,您将把要素视为空间维度,每个要素的长度为1(见下文)
以下是您的数据集中的示例
att1 .04 |
att2 .05 | < -- kernel convolving along this dimension
att3 .1 | notice the features have length 1. each
att4 .5 \|/ example have these 4 featues.
Run Code Online (Sandbox Code Playgroud)
我们将Conv1D示例设置为:
maxlen = num_features = 4 # this would be 30 in your case
input_dim = 1 # since this is the length of _each_ feature (as shown above)
model.add(Conv1D(2,2,activation='relu',input_shape=(maxlen, input_dim))
Run Code Online (Sandbox Code Playgroud)
如您所见,您的数据集必须重新整形为(569,30,1),请使用:
X = np.expand_dims(X, axis=2) # reshape (569, 30, 1)
# now input can be set as
model.add(Conv1D(2,2,activation='relu',input_shape=(30, 1))
Run Code Online (Sandbox Code Playgroud)
这是一个可以运行的完整示例(我将使用Functional API)
from keras.models import Model
from keras.layers import Conv1D, Dense, MaxPool1D, Flatten, Input
import numpy as np
inp = Input(shape=(5, 1))
conv = Conv1D(filters=2, kernel_size=2)(inp)
pool = MaxPool1D(pool_size=2)(conv)
flat = Flatten()(pool)
dense = Dense(1)(flat)
model = Model(inp, dense)
model.compile(loss='mse', optimizer='adam')
print(model.summary())
# get some data
X = np.expand_dims(np.random.randn(10, 5), axis=2)
y = np.random.randn(10, 1)
# fit model
model.fit(X, y)
Run Code Online (Sandbox Code Playgroud)
我在其他帖子中也提到过:
要将形状的常用特征表数据输入(nrows, ncols)到 Keras 的 Conv1d 中,需要执行以下 2 个步骤:
xtrain.reshape(nrows, ncols, 1)
# For conv1d statement:
input_shape = (ncols, 1)
Run Code Online (Sandbox Code Playgroud)
例如,取 iris 数据集的前 4 个特征:
要查看通常的格式及其形状:
iris_array = np.array(irisdf.iloc[:,:4].values)
print(iris_array[:5])
print(iris_array.shape)
Run Code Online (Sandbox Code Playgroud)
输出显示通常的格式及其形状:
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]]
(150, 4)
Run Code Online (Sandbox Code Playgroud)
以下代码更改格式:
nrows, ncols = iris_array.shape
iris_array = iris_array.reshape(nrows, ncols, 1)
print(iris_array[:5])
print(iris_array.shape)
Run Code Online (Sandbox Code Playgroud)
上述代码数据格式及其形状的输出:
[[[5.1]
[3.5]
[1.4]
[0.2]]
[[4.9]
[3. ]
[1.4]
[0.2]]
[[4.7]
[3.2]
[1.3]
[0.2]]
[[4.6]
[3.1]
[1.5]
[0.2]]
[[5. ]
[3.6]
[1.4]
[0.2]]]
(150, 4, 1)
Run Code Online (Sandbox Code Playgroud)
这适用于 Keras 的 Conv1d。因为input_shape (4,1)需要。
| 归档时间: |
|
| 查看次数: |
37987 次 |
| 最近记录: |