Ras*_*ngh 4 python numpy euclidean-distance
我有一个numpy像这样的数组:
import numpy as np
a = np.array([[1,0,1,0],
[1,1,0,0],
[1,0,1,0],
[0,0,1,1]])
Run Code Online (Sandbox Code Playgroud)
我想euclidian distance在每对行之间进行计算.
from scipy.spatial import distance
for i in range(0,a.shape[0]):
d = [np.sqrt(np.sum((a[i]-a[j])**2)) for j in range(i+1,a.shape[0])]
print(d)
Run Code Online (Sandbox Code Playgroud)
[1.4142135623730951,0.0,1.4142135623730951]
[1.4142135623730951,2.0]
[1.4142135623730951]
[]
有没有更好的pythonic方法来做到这一点,因为我必须在一个巨大的numpy阵列上运行此代码?
com*_*iro 10
对于更"优雅"的东西,你总是可以使用scikitlearn成对的欧几里德距离:
from sklearn.metrics.pairwise import euclidean_distances
euclidean_distances(a,a)
Run Code Online (Sandbox Code Playgroud)
具有与单个阵列相同的输出.
array([[ 0. , 1.41421356, 0. , 1.41421356],
[ 1.41421356, 0. , 1.41421356, 2. ],
[ 0. , 1.41421356, 0. , 1.41421356],
[ 1.41421356, 2. , 1.41421356, 0. ]])
Run Code Online (Sandbox Code Playgroud)
并且为了完整性,通常参考einsum进行距离计算.
a = np.array([[1,0,1,0],
[1,1,0,0],
[1,0,1,0],
[0,0,1,1]])
b = a.reshape(a.shape[0], 1, a.shape[1])
np.sqrt(np.einsum('ijk, ijk->ij', a-b, a-b))
array([[ 0. , 1.41421356, 0. , 1.41421356],
[ 1.41421356, 0. , 1.41421356, 2. ],
[ 0. , 1.41421356, 0. , 1.41421356],
[ 1.41421356, 2. , 1.41421356, 0. ]])
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6854 次 |
| 最近记录: |