Keras 最简单的 NN 模型:training.py 中的错误索引

vjg*_*vjg 2 python neural-network mnist keras tensorflow

我已经阅读了这个例子https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py并决定在我的基础上使用这个想法,因为这是 Keras 最简单的 NN。

这是我的基础https://drive.google.com/file/d/0B-B3QUQOzGZ7WVhzQmRsOTB0eFE/view (你可以下载我的 csv 文件,它只有 83Kb )

这是我的基地图片: 在此处输入图片说明

base.shape = (891, 23)

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop, Adam
import numpy as np
import pandas as pd
from sklearn.cross_validation import train_test_split
from keras.utils.vis_utils import model_to_dot
from IPython.display import SVG
from keras.utils import plot_model

base = pd.read_csv("mt.csv")

import pandas as pd

for col in base:
    if col != "Fare" and col != "Age":
    base[col]=base[col].astype(float)
X_train = base
y_train = base["Survived"]
del X_train["Survived"]

print("X_train=",X_train.shape)
print("y_train=", y_train.shape)
Run Code Online (Sandbox Code Playgroud)

输出:X_train= (891, 22) y_train= (891,)

from sklearn.cross_validation import train_test_split

X_train, X_test , y_train, y_test = train_test_split(X_train, y_train, test_size=0.3, random_state=42)

batch_size = 4
num_classes = 2
epochs = 2

print(X_train.shape[1], 'train samples')
print(X_test.shape[1], 'test samples')
Run Code Online (Sandbox Code Playgroud)

输出:22 个训练样本 22 个测试样本

y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Dense(40, activation='relu', input_shape=(21,)))
model.add(Dropout(0.2))
#model.add(Dense(20, activation='relu'))
#odel.add(Dropout(0.2))
model.add(Dense(2, activation='sigmoid'))

model.summary()
Run Code Online (Sandbox Code Playgroud)

出去:

图层(类型)输出形状参数

密集_1(密集)(无,40)880


dropout_1(辍学)(无,40)0


密集_2(密集)(无,2)82

model.compile(loss='binary_crossentropy',
          optimizer=Adam(),
          metrics=['accuracy'])

plot_model(model, to_file='model.png')

SVG(model_to_dot(model).create(prog='dot', format='svg'))

print("X_train.shape=", X_train.shape)
print("X_test=",X_test.shape)

history = model.fit(X_train, y_train,
                batch_size=batch_size,
                epochs=epochs,
                verbose=1,
                validation_data=(X_test, y_test))
Run Code Online (Sandbox Code Playgroud)

回溯(最近一次调用):文件“new.py”,第 67 行,validation_data=(X_test, y_test))

文件“miniconda3/lib/python3.6/site-packages/keras/models.py”,第845行,适合initial_epoch=initial_epoch)

文件“miniconda3/lib/python3.6/site-packages/keras/engine/training.py”,第1405行,适合batch_size=batch_size)

文件“miniconda3/lib/python3.6/site-packages/keras/engine/training.py”,第 1295 行,在 _standardize_user_data exception_prefix='model input')

文件“miniconda3/lib/python3.6/site-packages/keras/engine/training.py”,第 133 行,在 _standardize_input_data str(array.shape))

ValueError:检查模型输入时出错:预期dense_1_input具有形状(无,21)但得到形状为(623,22)的数组[在5.1秒内完成,退出代码为1]

我该如何解决这个错误?我尝试将输入形状更改为 (20,) 或 (22,) 等,但没有成功。

例如,如果 input_shape=(22,) 我有错误:文件“miniconda3/lib/python3.6/site-packages/pandas/core/indexing.py”,第1873行,在maybe_convert_indices raise IndexError("indices is out范围内”)

Nil*_*ari 5

input_shape应该与数据中的特征数量相同,这应该是input_shape=(22,)你的情况。

IndexError是由于熊猫数据帧中的一些不同索引,因此使用以下方法将数据帧转换为 numpy 矩阵as_matrix()

history = model.fit(X_train.as_matrix(), y_train,
            batch_size=batch_size,
            epochs=epochs,
            verbose=1,
            validation_data=(X_test.as_matrix(), y_test))
Run Code Online (Sandbox Code Playgroud)