ja7*_*a72 5 fortran matrix linear-algebra lapack fortran95
我有一个y = Ax + b形式的方程组,其中y,x和b是n×1向量,A是×n(对称)矩阵.
所以这里是皱纹.并非所有的x都是未知的.指定了某些x行,并且y的相应行未知.以下是一个例子
| 10 | | 5 -2 1 | | * | | -1 |
| * | = | -2 2 0 | | 1 | + | 1 |
| 1 | | 1 0 1 | | * | | 2 |
Run Code Online (Sandbox Code Playgroud)
其中,*指定未知数.
我已经为Fortran中的上述问题构建了一个求解器,但是我想知道是否有一个不错的鲁棒求解器作为Lapack或MLK的一部分用于这些类型的问题?
我的求解器基于一个排序矩阵,称为根据已知和未知pivot = [1,3,2]重新排列x和y向量
| 10 | | 5 1 -2 | | * | | -1 |
| 1 | | 1 1 0 | | * | + | 2 |
| * | | -2 0 2 | | 1 | | 1 |
Run Code Online (Sandbox Code Playgroud)
并使用块矩阵解和LU分解求解
! solves a n×n system of equations where k values are known from the 'x' vector
function solve_linear_system(A,b,x_known,y_known,pivot,n,k) result(x)
use lu
integer(c_int),intent(in) :: n, k, pivot(n)
real(c_double),intent(in) :: A(n,n), b(n), x_known(k), y_known(n-k)
real(c_double) :: x(n), y(n), r(n-k), A1(n-k,n-k), A3(n-k,k), b1(n-k)
integer(c_int) :: i, j, u, code, d, indx(n-k)
u = n-k
!store known `x` and `y` values
x(pivot(u+1:n)) = x_known
y(pivot(1:u)) = y_known
!define block matrices
! |y_known| = | A1 A3 | | * | + |b1|
| | * | = | A3` A2 | | x_known | |b2|
A1 = A(pivot(1:u), pivot(1:u))
A3 = A(pivot(1:u), pivot(u+1:n))
b1 = b(pivot(1:u))
!define new rhs vector
r = y_known -matmul(A3, x_known)-b1
% solve `A1*x=r` with LU decomposition from NR book for 'x'
call ludcmp(A1,u,indx,d,code)
call lubksb(A1,u,indx,r)
% store unknown 'x' values (stored into 'r' by 'lubksb')
x(pivot(1:u)) = r
end function
Run Code Online (Sandbox Code Playgroud)
对于上面的例子,解决方案是
| 10.0 | | 3.5 |
y = | -4.0 | x = | 1.0 |
| 1.0 | | -4.5 |
Run Code Online (Sandbox Code Playgroud)
PS.线性系统通常具有n<=20方程式.