Sci*_*iPy 5 python r curve-fitting scipy
我用 R 编写了以下代码来估计三个系数(a、b 和 c):
\n\ny <- c(120, 125, 158, 300, 350, 390, 2800, 5900, 7790)\nt <- 1:9\nfit <- nls(y ~ a * (((b + c)^2/b) * exp(-(b + c) * t))/(1 + (c/b) *\n exp(-(b + c) * t))^2, start = list(a = 17933, b = 0.01, c = 0.31))\nRun Code Online (Sandbox Code Playgroud)\n\n我得到这个结果
\n\n> summary(fit )\n\nFormula: y ~ a * (((b + c)^2/b) * exp(-(b + c) * t))/(1 + (c/b) * exp(-(b + \n c) * t))^2\n\nParameters:\n Estimate Std. Error t value Pr(>|t|) \na 2.501e+04 2.031e+03 12.312 1.75e-05 ***\nb 1.891e-05 1.383e-05 1.367 0.221 \nc 1.254e+00 1.052e-01 11.924 2.11e-05 ***\n---\nSignif. codes: 0 \xe2\x80\x98***\xe2\x80\x99 0.001 \xe2\x80\x98**\xe2\x80\x99 0.01 \xe2\x80\x98*\xe2\x80\x99 0.05 \xe2\x80\x98.\xe2\x80\x99 0.1 \xe2\x80\x98 \xe2\x80\x99 1\n\nResidual standard error: 248.8 on 6 degrees of freedom\n\nNumber of iterations to convergence: 33 \nAchieved convergence tolerance: 6.836e-06\nRun Code Online (Sandbox Code Playgroud)\n\n如何用Python做出同样的事情?
\n您可以使用curve_fit,它会给出相同的结果:
import scipy.optimize as optimization
import numpy as np
y = np.array([120, 125, 158, 300, 350, 390, 2800, 5900, 7790])
t = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
start = np.array([17933, 0.01, 0.31])
def f(t,a,b,c):
num = a*(np.exp(-t*(b+c))*np.power(b+c, 2)/b)
denom = np.power(1+(c/b)*np.exp(-t*(b+c)), 2)
return num/denom
print(optimization.curve_fit(f, t, y, start))
#(array([ 2.50111448e+04, 1.89129922e-05, 1.25426156e+00]), array([[ 4.12657233e+06, 2.58151776e-02, -2.00881091e+02],
# [ 2.58151776e-02, 1.91318685e-10, -1.44733425e-06],
# [ -2.00881091e+02, -1.44733425e-06, 1.10654268e-02]]))
Run Code Online (Sandbox Code Playgroud)