use*_*818 5 python matrix linear-algebra svm
我正在研究内核方法,在某些时候我需要将一个非正半确定矩阵(即相似矩阵)组成一个PSD矩阵.我试过这种方法:
def makePSD(mat):
#make symmetric
k = (mat+mat.T)/2
#make PSD
min_eig = np.min(np.real(linalg.eigvals(mat)))
e = np.max([0, -min_eig + 1e-4])
mat = k + e*np.eye(mat.shape[0]);
return mat
Run Code Online (Sandbox Code Playgroud)
但如果我使用以下函数测试结果矩阵,它将失败:
def isPSD(A, tol=1e-8):
E,V = linalg.eigh(A)
return np.all(E >= -tol)
Run Code Online (Sandbox Code Playgroud)
我也尝试了其他相关问题中建议的方法(如何计算最近的正半正定矩阵?),但得到的矩阵也未能通过isPSD测试.
对于如何正确地进行正确的转换,您有什么建议吗?
Ahm*_*sih 14
我要说的第一件事是不要eigh
用于测试正定性,因为eigh
假设输入是Hermitian.这可能就是为什么你认为你提到的答案不起作用的原因.
我不喜欢那个答案,因为它有一个迭代(并且,我无法理解它的例子),也没有其他答案,它不承诺给你最好的正定矩阵,即最接近的那个根据Frobenius范数(元素的平方和)的输入.(我完全不知道你的问题代码应该做什么.)
我喜欢Higham 1988年论文的Matlab实现:https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd所以我把它移植到Python:
from numpy import linalg as la
def nearestPD(A):
"""Find the nearest positive-definite matrix to input
A Python/Numpy port of John D'Errico's `nearestSPD` MATLAB code [1], which
credits [2].
[1] https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd
[2] N.J. Higham, "Computing a nearest symmetric positive semidefinite
matrix" (1988): https://doi.org/10.1016/0024-3795(88)90223-6
"""
B = (A + A.T) / 2
_, s, V = la.svd(B)
H = np.dot(V.T, np.dot(np.diag(s), V))
A2 = (B + H) / 2
A3 = (A2 + A2.T) / 2
if isPD(A3):
return A3
spacing = np.spacing(la.norm(A))
# The above is different from [1]. It appears that MATLAB's `chol` Cholesky
# decomposition will accept matrixes with exactly 0-eigenvalue, whereas
# Numpy's will not. So where [1] uses `eps(mineig)` (where `eps` is Matlab
# for `np.spacing`), we use the above definition. CAVEAT: our `spacing`
# will be much larger than [1]'s `eps(mineig)`, since `mineig` is usually on
# the order of 1e-16, and `eps(1e-16)` is on the order of 1e-34, whereas
# `spacing` will, for Gaussian random matrixes of small dimension, be on
# othe order of 1e-16. In practice, both ways converge, as the unit test
# below suggests.
I = np.eye(A.shape[0])
k = 1
while not isPD(A3):
mineig = np.min(np.real(la.eigvals(A3)))
A3 += I * (-mineig * k**2 + spacing)
k += 1
return A3
def isPD(B):
"""Returns true when input is positive-definite, via Cholesky"""
try:
_ = la.cholesky(B)
return True
except la.LinAlgError:
return False
if __name__ == '__main__':
import numpy as np
for i in xrange(10):
for j in xrange(2, 100):
A = np.random.randn(j, j)
B = nearestPD(A)
assert(isPD(B))
print('unit test passed!')
Run Code Online (Sandbox Code Playgroud)
除了找到最近的正定矩阵之外,上述库还包括isPD
使用Cholesky分解来确定矩阵是否为正定矩阵.这样,你不需要任何容差 - 任何想要肯定的函数都会运行Cholesky,因此它是确定正定性的绝对最佳方法.
它最后还有一个基于蒙特卡罗的单元测试.如果你把它放入posdef.py
并运行python posdef.py
,它将运行一个单元测试,在我的笔记本电脑上传递〜秒.然后在你的代码中你可以import posdef
打电话posdef.nearestPD
或posdef.isPD
.
如果你这样做,代码也在Gist中.