Dav*_*rek 12 matlab traveling-salesman neural-network
首先,这是家庭作业.我认为很明显我已经付出了努力,我正在寻找提示,而不是代码.
问题如下.操作方程有四个组成部分用于改变给定的神经元.
如果我对D进行足够重量以使其具有任何效果,则网络将进行无效巡视(例如,访问A,D,无处,E,C).但是,我可以减轻D并且代码将找到解决方案,但不是那些距离最小的解决方案.
我非常感谢任何建议,我一直在敲击键盘一会儿.任何熟悉使用Hopfield网络解决TSP的人都应该理解这些代码.
Das代码:
%parameters
n=5;
theta = .5;
u0 = 0.02;
h = .1;
limit = 2000;
%init u
u=zeros(n,n);
uinit = -u0/2*log(n-1); %p94 uINIT = - u0/2 * ln(n-1)
for i=1:n
for j=1:n
u(i,j) = uinit * (1+rand()*0.2-0.1); %add noise [-0.1*uInit 0.1*uINIT]
end
end
%loop
for index=1:limit
i = ceil(rand()*n);
k = ceil(rand()*n);
%runge kutta
k1 = h*du(u,i,k,0);
k2 = h*du(u,i,k, k1/2);
k3 = h*du(u,i,k, k2/2);
k4 = h*du(u,i,k, k3);
u(i,k) = u(i,k) + (k1 + 2*k2 + 2*k3 + k4)/6;
end
Vfinal = hardlim(V(u)-theta)
Run Code Online (Sandbox Code Playgroud)
杜()
function out=du(u,X,i,c)
dist = [0, 41, 45, 32, 32;
41, 0, 36, 64, 54;
45, 36, 0, 76, 32;
32, 64, 76, 0, 60;
32, 54, 32, 60, 0];
t = 1;
n = 5;
A = 10;
B = 10;
C = 10;
D = .0001;
AComp = A*sum(V(u(X,:))) - A*V(u(X,i));
BComp = B*sum(V(u(:,i))) - B*V(u(X,i));
CComp = C*(sum(sum(V(u)))-n);
DComp = 0;
before = i-1;
after = i+1;
if before == 0
before = 5;
end
if after == 6
after = 1;
end
for Y=1:5
DComp = DComp + dist(X,Y) * (V(u(Y,after)) + V(u(Y,before)));
end
DComp = DComp * D;
out = -1*(u(X,i)+c)/t - AComp - BComp - CComp - DComp;
Run Code Online (Sandbox Code Playgroud)
V()
function out=V(u)
u0 = 0.02;
out = (1 + tanh(u/u0))/2;
Run Code Online (Sandbox Code Playgroud)
我从未尝试过用神经网络解决 TSP,但我发现它采用遗传方法解决得非常好且非常快。
不过,我已经完成了许多神经网络项目,而且我猜想,由于 TSP 通常可以在(城市的)单个网络上拥有许多解决方案,因此神经网络可以在解决方案之间来回拖动,但从来没有真正实现过。成功收敛到任何一个。
约翰·R·多纳