更改参数后如何自动更改颜色

use*_*260 4 python matplotlib

在以下代码中,条形图的颜色会随着阈值的更改而更改.我没有使用阈值并在代码中绘制水平线,而是想在OnMouseMove函数中使用y参数,以便用户可以更改"阈值"的位置.然后,我想要在更改y时更新颜色.

我认为我需要的是"观察者模式"或者使用动画工具的技巧,但不知道如何实现它.我很欣赏有关如何做到这一点的任何见解.谢谢

%matplotlib notebook
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.colors as mcol
import matplotlib.cm as cm
import matplotlib.pyplot as plt

np.random.seed(12345)
df = pd.DataFrame([np.random.normal(335,1500,300), 
                   np.random.normal(410,900,300), 
                   np.random.normal(410,1200,300), 
                   np.random.normal(480,550,300)], 
                  index=[1,2,3,4])

fig, ax = plt.subplots()
plt.show()
bars = plt.bar(range(df.shape[0]), df.mean(axis = 1), color = 'lightslategrey')

fig = plt.gcf()
threshold=420
plt.axhline(y = threshold, color = 'grey', alpha = 0.5)

cm1 = mcol.LinearSegmentedColormap.from_list("Test",["b", "white", "purple"])
cpick = cm.ScalarMappable(cmap=cm1)
cpick.set_array([])

percentages = []
for bar in bars:
    percentage = (bar.get_height()-threshold)/bar.get_height()
    if percentage>1: percentage = 1
    if percentage<0: percentage=0
    percentages.append(percentage)

cpick.to_rgba(percentages)
bars = plt.bar(range(df.shape[0]), df.mean(axis = 1), color = cpick.to_rgba(percentages))
plt.colorbar(cpick, orientation='horizontal')

def onMouseMove(event):
    ax.lines = [ax.lines[0]]
    plt.axhline(y=event.ydata, color="k")

fig.canvas.mpl_connect('motion_notify_event', onMouseMove)

plt.xticks(range(df.shape[0]), df.index, alpha = 0.8)
Run Code Online (Sandbox Code Playgroud)

Imp*_*est 5

首先,你应该使用一个条形图和恰好一个axhline(使用更多将使一切变得混乱).您可以通过设置条形图的颜色

for bar in bars:
    bar.set_color(..)
Run Code Online (Sandbox Code Playgroud)

你可以通过更新axhline的位置line.set_ydata(position).

现在,对于每个鼠标移动事件,您需要更新axhline的位置,计算百分比并将新颜色应用于条形.所以这些事情应该在一个函数中完成,每次触发鼠标移动事件时都会调用它.应用这些设置后,需要绘制画布以使其可见.

这是一个完整的代码.

import pandas as pd
import numpy as np
import matplotlib.colors as mcol
import matplotlib.cm as cm
import matplotlib.pyplot as plt

np.random.seed(12345)
df = pd.DataFrame([np.random.normal(335,1500,300), 
                   np.random.normal(410,900,300), 
                   np.random.normal(410,1200,300), 
                   np.random.normal(480,550,300)], 
                  index=[1,2,3,4])

fig, ax = plt.subplots()

threshold=420.
bars = plt.bar(range(df.shape[0]), df.mean(axis = 1), color = 'lightslategrey')
axline = plt.axhline(y = threshold, color = 'grey', alpha = 0.5)

cm1 = mcol.LinearSegmentedColormap.from_list("Test",["b", "white", "purple"])
cpick = cm.ScalarMappable(cmap=cm1) 
cpick.set_array([])
plt.colorbar(cpick, orientation='horizontal')

def percentages(threshold):
    percentages = []
    for bar in bars:
        percentage = (bar.get_height()-threshold)/bar.get_height()
        if percentage>1: percentage = 1
        if percentage<0: percentage=0
        percentages.append(percentage)
    return percentages

def update(threshold):
    axline.set_ydata(threshold)
    perc = percentages(threshold)
    for bar, p in zip(bars, perc):
        bar.set_color(cpick.to_rgba(p))

# update once before showing
update(threshold)

def onMouseMove(event):
    if event.inaxes == ax:
        update(event.ydata)
        fig.canvas.draw_idle()

fig.canvas.mpl_connect('motion_notify_event', onMouseMove)

plt.xticks(range(df.shape[0]), df.index, alpha = 0.8)

plt.show()
Run Code Online (Sandbox Code Playgroud)

  • 请注意,如果您想在 jupyter notebook 中使用此代码,则需要使用交互式后端 `%matplotlib notebook`。 (2认同)