如何从数据框中删除空白/ NA并将值向上移动

moc*_*ash 7 python numpy pandas

我有一个巨大的数据框,其中包含值和空白/ NA.我想从数据框中删除空白并在列中向上移动下一个值.考虑下面的示例数据帧.

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5,4))
df.iloc[1,2] = np.NaN
df.iloc[0,1] = np.NaN
df.iloc[2,1] = np.NaN
df.iloc[2,0] = np.NaN
df

       0           1           2         3
0   1.857476      NaN      -0.462941   -0.600606
1   0.000267   -0.540645    NaN        0.492480
2   NaN           NaN      -0.803889   0.527973
3   0.566922    0.036393   -1.584926   2.278294
4   -0.243182   -0.221294   1.403478   1.574097
Run Code Online (Sandbox Code Playgroud)

我希望我的输出如下

       0             1             2           3
0   1.857476    -0.540645     -0.462941   -0.600606
1   0.000267     0.036393     -0.803889    0.492480
2   0.566922    -0.221294     -1.584926    0.527973
3   -0.243182                  1.403478    2.278294
4                                          1.574097
Run Code Online (Sandbox Code Playgroud)

我希望删除NaN并使下一个值向上移动.df.shift没有帮助.我尝试使用多个循环和if语句并获得了所需的结果,但有没有更好的方法来完成它.

jez*_*ael 12

你可以用applydropna:

np.random.seed(100)
df = pd.DataFrame(np.random.randn(5,4))
df.iloc[1,2] = np.NaN
df.iloc[0,1] = np.NaN
df.iloc[2,1] = np.NaN
df.iloc[2,0] = np.NaN
print (df)
          0         1         2         3
0 -1.749765       NaN  1.153036 -0.252436
1  0.981321  0.514219       NaN -1.070043
2       NaN       NaN -0.458027  0.435163
3 -0.583595  0.816847  0.672721 -0.104411
4 -0.531280  1.029733 -0.438136 -1.118318

df1 = df.apply(lambda x: pd.Series(x.dropna().values))
print (df1)
          0         1         2         3
0 -1.749765  0.514219  1.153036 -0.252436
1  0.981321  0.816847 -0.458027 -1.070043
2 -0.583595  1.029733  0.672721  0.435163
3 -0.531280       NaN -0.438136 -0.104411
4       NaN       NaN       NaN -1.118318
Run Code Online (Sandbox Code Playgroud)

然后如果需要替换为空的空间,那么创建混合值 - 使用数字的字符串 - 可以破坏某些函数:

df1 = df.apply(lambda x: pd.Series(x.dropna().values)).fillna('')
print (df1)
          0         1         2         3
0  -1.74977  0.514219   1.15304 -0.252436
1  0.981321  0.816847 -0.458027 -1.070043
2 -0.583595   1.02973  0.672721  0.435163
3  -0.53128           -0.438136 -0.104411
4                               -1.118318
Run Code Online (Sandbox Code Playgroud)


piR*_*red 6

一种numpy方法
这个想法是对列进行排序,np.isnan以便将np.nans 放在最后。我kind='mergesort'用来保留 non 中的顺序np.nan。最后,我对数组进行切片并重新分配。我跟进这个fillna

v = df.values
i = np.arange(v.shape[1])
a = np.isnan(v).argsort(0, kind='mergesort')
v[:] = v[a, i]
print(df.fillna(''))

          0         1         2         3
0   1.85748 -0.540645 -0.462941 -0.600606
1  0.000267  0.036393 -0.803889  0.492480
2  0.566922 -0.221294  -1.58493  0.527973
3 -0.243182             1.40348  2.278294
4                                1.574097
Run Code Online (Sandbox Code Playgroud)

如果您不想就地更改数据框

v = df.values
i = np.arange(v.shape[1])
a = np.isnan(v).argsort(0, kind='mergesort')
pd.DataFrame(v[a, i], df.index, df.columns).fillna('')
Run Code Online (Sandbox Code Playgroud)

这样做的目的是利用numpy速度

天真的时间测试

在此处输入图片说明