aht*_*rix 4 python bioinformatics
我有一个生成元组元组的所有可能组合
( (base1 , position1) , (base2 , position2) )
Run Code Online (Sandbox Code Playgroud)
的bases = ["U", "C", "A", "G"]和positions = [0,1,2,3,4,5,6,7,8].
要求
例如:
( (A,1), (B,2) ) == ( (B,2) , (A,1) )并且
( (A,1), (B,1) )应该被丢弃.
样本输出:
[ ( (U,0) , (U,1) ), ( (U,0) , (U,2) ), ( (U,0) , (U,3) ) ...]
应该有448的长度
例:
对于字符串长度2:
((U,0),(U,1))
((U,0),(C,1))
((U,0),(A,1))
((U,0),(G,1))
((C,0),(U,1))
((C,0),(C,1))
((C,0),(A,1))
((C,0),(G,1))
((A,0),(U,1))
((A,0),(C,1))
((A,0),(A,1))
((A,0),(G,1))
((G,0),(U,1))
((G,0),(C,1))
((G,0),(A,1))
((G,0),(G,1))
Run Code Online (Sandbox Code Playgroud)
会是所有组合......我想
到目前为止我有这个
all_possible = []
nucleotides = ["U","C","A","G"]
for i in range(len(nucleotides)):
for j in range(8):
all_possible.append(((nucleotides[i],j),(nucleotides[i],j)))
Run Code Online (Sandbox Code Playgroud)
听起来你想要(每个可能的2个基本单词)X(从范围(8)中抽取的每2个组合的笛卡尔积).
你可以得到这个
from itertools import product, combinations
def build(num_chars, length):
bases = ["U", "C", "A", "G"]
for letters in product(bases, repeat=num_chars):
for positions in combinations(range(length), num_chars):
yield list(zip(letters, positions))
Run Code Online (Sandbox Code Playgroud)
这给了我们
In [4]: output = list(build(2, 8))
In [5]: len(output)
Out[5]: 448
In [6]: output[:4]
Out[6]:
[[('U', 0), ('U', 1)],
[('U', 0), ('U', 2)],
[('U', 0), ('U', 3)],
[('U', 0), ('U', 4)]]
In [7]: output[-4:]
Out[7]:
[[('G', 4), ('G', 7)],
[('G', 5), ('G', 6)],
[('G', 5), ('G', 7)],
[('G', 6), ('G', 7)]]
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
211 次 |
| 最近记录: |