如何在tensorboard上显示多次运行的平均值

Rav*_*Ziv 8 tensorflow tensorboard

有没有办法在tensorflow上显示多个不同运行的平均值?我只能在同一个图表上看到它们(通过发送不同运行的路径),但我想在图表上看到它们的平均值

Ale*_*lex 5

正如@dga 提到的,这还没有实现。这是一些EventAccumulator用于组合标量 tensorflow 摘要值的代码。这可以扩展以适应其他汇总类型。

import os
from collections import defaultdict

import numpy as np
import tensorflow as tf
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator


def tabulate_events(dpath):

    summary_iterators = [EventAccumulator(os.path.join(dpath, dname)).Reload() for dname in os.listdir(dpath)]

    tags = summary_iterators[0].Tags()['scalars']

    for it in summary_iterators:
        assert it.Tags()['scalars'] == tags

    out = defaultdict(list)

    for tag in tags:
        for events in zip(*[acc.Scalars(tag) for acc in summary_iterators]):
            assert len(set(e.step for e in events)) == 1

            out[tag].append([e.value for e in events])

    return out


def write_combined_events(dpath, d_combined, dname='combined'):

    fpath = os.path.join(dpath, dname)
    writer = tf.summary.FileWriter(fpath)

    tags, values = zip(*d_combined.items())

    timestep_mean = np.array(values).mean(axis=-1)

    for tag, means in zip(tags, timestep_mean):
        for i, mean in enumerate(means):
            summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=mean)])
            writer.add_summary(summary, global_step=i)

        writer.flush()

dpath = '/path/to/root/directory'

d = tabulate_events(dpath)

write_combined_events(dpath, d)
Run Code Online (Sandbox Code Playgroud)

此解决方案假定目录结构如下:

dpath
??? 1
?   ??? events.out.tfevents.1518552132.Alexs-MacBook-Pro-2.local
??? 11
?   ??? events.out.tfevents.1518552180.Alexs-MacBook-Pro-2.local
??? 21
?   ??? events.out.tfevents.1518552224.Alexs-MacBook-Pro-2.local
??? 31
?   ??? events.out.tfevents.1518552264.Alexs-MacBook-Pro-2.local
??? 41
    ??? events.out.tfevents.1518552304.Alexs-MacBook-Pro-2.local
Run Code Online (Sandbox Code Playgroud)


dga*_*dga 4

请关注问题 376以查看这方面的进展。这是一个活跃的功能请求,在上个月取得了一些进展,但截至目前,还没有办法做到你想要的。然而。