Kev*_*len 10 python svc scikit-learn
我使用SVM分类器构建了情绪分析器.我训练模型的概率=真,它可以给我概率.但是当我腌制我的模型并稍后再加载它时,概率不再起作用了.
该模型:
from sklearn.svm import SVC, LinearSVC
pipeline_svm = Pipeline([
('bow', CountVectorizer()),
('tfidf', TfidfTransformer()),
('classifier', SVC(probability=True)),])
# pipeline parameters to automatically explore and tune
param_svm = [
{'classifier__C': [1, 10, 100, 1000], 'classifier__kernel': ['linear']},
{'classifier__C': [1, 10, 100, 1000], 'classifier__gamma': [0.001, 0.0001], 'classifier__kernel': ['rbf']},
]
grid_svm = GridSearchCV(
pipeline_svm,
param_grid=param_svm,
refit=True,
n_jobs=-1,
scoring='accuracy',
cv=StratifiedKFold(label_train, n_folds=5),)
svm_detector_reloaded = cPickle.load(open('svm_sentiment_analyzer.pkl', 'rb'))
print(svm_detector_reloaded.predict([""""Today is awesome day"""])[0])
Run Code Online (Sandbox Code Playgroud)
给我:
AttributeError:当probability = False时,predict_proba不可用
小智 8
按照上面的建议在初始化分类器时添加 (probability=True) 解决了我的错误:
clf = SVC(kernel='rbf', C=1e9, gamma=1e-07, probability=True).fit(xtrain,ytrain)
Run Code Online (Sandbox Code Playgroud)
小智 6
用: SVM(probability=True)
或者
grid_svm = GridSearchCV(
probability=True
pipeline_svm,
param_grid=param_svm,
refit=True,
n_jobs=-1,
scoring='accuracy',
cv=StratifiedKFold(label_train, n_folds=5),)
Run Code Online (Sandbox Code Playgroud)
如果这有帮助,请使用以下命令对模型进行酸洗:
import pickle
pickle.dump(grid_svm, open('svm_sentiment_analyzer.pkl', 'wb'))
Run Code Online (Sandbox Code Playgroud)
并加载模型并预测
svm_detector_reloaded = pickle.load(open('svm_sentiment_analyzer.pkl', 'rb'))
print(svm_detector_reloaded.predict_proba(["Today is an awesome day"])[0])
Run Code Online (Sandbox Code Playgroud)
sents在处理代码以重新运行它并在 pandas DataFrame 上训练模型后,给我返回了两个概率
grid_svm.fit(sents.Sentence.values, sents.Positive.values)
Run Code Online (Sandbox Code Playgroud)
模型序列化的最佳实践(例如使用)可以在https://scikit-learn.org/stable/modules/model_persistence.htmljoblib找到