ayy*_*mbo 17 regression python-3.x scikit-learn xgboost data-science
我试图在XGBoost上使用scikit-learn的GridSearchCV进行超级计量搜索.在网格搜索期间,我希望它能够提前停止,因为它可以大大减少搜索时间,并且(期望)在我的预测/回归任务上有更好的结果.我通过其Scikit-Learn API使用XGBoost.
model = xgb.XGBRegressor()
GridSearchCV(model, paramGrid, verbose=verbose ,fit_params={'early_stopping_rounds':42}, cv=TimeSeriesSplit(n_splits=cv).get_n_splits([trainX, trainY]), n_jobs=n_jobs, iid=iid).fit(trainX,trainY)
Run Code Online (Sandbox Code Playgroud)
我尝试使用fit_params提供早期停止参数,但之后它会抛出此错误,这主要是因为缺少早期停止所需的验证集:
/opt/anaconda/anaconda3/lib/python3.5/site-packages/xgboost/callback.py in callback(env=XGBoostCallbackEnv(model=<xgboost.core.Booster o...teration=4000, rank=0, evaluation_result_list=[]))
187 else:
188 assert env.cvfolds is not None
189
190 def callback(env):
191 """internal function"""
--> 192 score = env.evaluation_result_list[-1][1]
score = undefined
env.evaluation_result_list = []
193 if len(state) == 0:
194 init(env)
195 best_score = state['best_score']
196 best_iteration = state['best_iteration']
Run Code Online (Sandbox Code Playgroud)
如何使用early_stopping_rounds在XGBoost上应用GridSearch?
注意:模型在没有gridsearch的情况下工作,GridSearch的工作也没有'fit_params = {'early_stopping_rounds':42}
小智 14
使用时,early_stopping_rounds您还必须为fit方法提供eval_metric和eval_set作为输入参数.通过计算评估集上的误差来完成早期停止.错误必须减少,early_stopping_rounds否则早期停止生成额外的树.
有关详细信息,请参阅xgboosts fit方法的文档.
在这里,您可以看到最小的完整工作示例
import xgboost as xgb
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import TimeSeriesSplit
cv = 2
trainX= [[1], [2], [3], [4], [5]]
trainY = [1, 2, 3, 4, 5]
# these are the evaluation sets
testX = trainX
testY = trainY
paramGrid = {"subsample" : [0.5, 0.8]}
fit_params={"early_stopping_rounds":42,
"eval_metric" : "mae",
"eval_set" : [[testX, testY]]}
model = xgb.XGBRegressor()
gridsearch = GridSearchCV(model, paramGrid, verbose=1 ,
fit_params=fit_params,
cv=TimeSeriesSplit(n_splits=cv).get_n_splits([trainX,trainY]))
gridsearch.fit(trainX,trainY)
Run Code Online (Sandbox Code Playgroud)
emi*_*459 14
从 sklearn 0.21.3 开始,@glao 的回答和对@Vasim 的评论/问题的回复更新(请注意,已从 sklearnfit_params的实例化中GridSearchCV移出并移入fit()方法中;此外,导入还专门引入了 sklearn 包装器来自 xgboost 的模块):
import xgboost.sklearn as xgb
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import TimeSeriesSplit
cv = 2
trainX= [[1], [2], [3], [4], [5]]
trainY = [1, 2, 3, 4, 5]
# these are the evaluation sets
testX = trainX
testY = trainY
paramGrid = {"subsample" : [0.5, 0.8]}
fit_params={"early_stopping_rounds":42,
"eval_metric" : "mae",
"eval_set" : [[testX, testY]]}
model = xgb.XGBRegressor()
gridsearch = GridSearchCV(model, paramGrid, verbose=1,
cv=TimeSeriesSplit(n_splits=cv).get_n_splits([trainX, trainY]))
gridsearch.fit(trainX, trainY, **fit_params)
Run Code Online (Sandbox Code Playgroud)
这是一个在管道中使用 GridSearchCV 的解决方案。当您拥有预处理训练数据所需的管道时,就会出现挑战。例如,当X是文本文档时,您需要TFTDFVectorizer对其进行矢量化。
覆盖 XGBRegressor 或 XGBClssifier.fit() 函数
from xgboost.sklearn import XGBRegressor
from sklearn.model_selection import train_test_split
class XGBRegressor_ES(XGBRegressor):
def fit(self, X, y, *, eval_test_size=None, **kwargs):
if eval_test_size is not None:
params = super(XGBRegressor, self).get_xgb_params()
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=eval_test_size, random_state=params['random_state'])
eval_set = [(X_test, y_test)]
# Could add (X_train, y_train) to eval_set
# to get .eval_results() for both train and test
#eval_set = [(X_train, y_train),(X_test, y_test)]
kwargs['eval_set'] = eval_set
return super(XGBRegressor_ES, self).fit(X_train, y_train, **kwargs)
Run Code Online (Sandbox Code Playgroud)
用法示例
下面是一个多步骤管道,其中包括对 X 的多个转换。管道的 fit() 函数将新的评估参数传递给上面的 XGBRegressor_ES 类,形式为 xgbr__eval_test_size=200。在这个例子中:
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import VarianceThreshold
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectPercentile, f_regression
xgbr_pipe = Pipeline(steps=[('tfidf', TfidfVectorizer()),
('vt',VarianceThreshold()),
('scaler', StandardScaler()),
('Sp', SelectPercentile()),
('xgbr',XGBRegressor_ES(n_estimators=2000,
objective='reg:squarederror',
eval_metric='mae',
learning_rate=0.0001,
random_state=7)) ])
X_train = train_idxs['f_text'].values
y_train = train_idxs['Pct_Change_20'].values
Run Code Online (Sandbox Code Playgroud)
安装管道示例:
%time xgbr_pipe.fit(X_train, y_train,
xgbr__eval_test_size=200,
xgbr__eval_metric='mae',
xgbr__early_stopping_rounds=75)
Run Code Online (Sandbox Code Playgroud)
GridSearchCV 拟合示例:
learning_rate = [0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3]
param_grid = dict(xgbr__learning_rate=learning_rate)
grid_search = GridSearchCV(xgbr_pipe, param_grid, scoring="neg_mean_absolute_error", n_jobs=-1, cv=10)
grid_result = grid_search.fit(X_train, y_train,
xgbr__eval_test_size=200,
xgbr__eval_metric='mae',
xgbr__early_stopping_rounds=75)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
11823 次 |
| 最近记录: |