Fin*_*inn 2 r filter shiny dplyr
我有一个数据框,它将社会人口统计数据与多个网站的意识措施相结合。每个网站都有一个单独的列,说明此人是否知道该网站(“是”/“否”)。此外,每个受访者都应该根据他出席的人数(变量 popWeight)加权。
我想创建一个闪亮的应用程序,为知道所选网站的人显示图表。该网站应该可以通过 selectInput () 按钮进行选择。
我发现了几篇关于 stackoverflow 的文章,这些文章涵盖了 dplyr+shiny 的数据集过滤器。但所有这些都改变了变量值而不是变量本身。
我尝试使用以下方法,但没有成功(编码示例见下文)。
示例数据框:
gender <- factor(sample(1:2, 5, replace=TRUE), levels = c(1,2,99), labels = c("Male", "Female", "Missing Value"))
age <- sample(18:55, 5, replace=TRUE)
web1 <- factor(sample(1:2, 5, replace=TRUE), levels = c(1,2,99), labels = c("Yes", "No", "Missing Value"))
web2 <- factor(sample(1:2, 5, replace=TRUE), levels = c(1,2,99), labels = c("Yes", "No", "Missing Value"))
web3 <- factor(sample(1:2, 5, replace=TRUE), levels = c(1,2,99), labels = c("Yes", "No", "Missing Value"))
web4 <- factor(sample(1:2, 5, replace=TRUE), levels = c(1,2,99), labels = c("Yes", "No", "Missing Value"))
web5 <- factor(sample(1:2, 5, replace=TRUE), levels = c(1,2,99), labels = c("Yes", "No", "Missing Value"))
popWeight <- sample(1000:1500, 5, replace=TRUE)
df <- data.frame(gender, age, web1, web2, web3, web4, web5, popWeight)
df
Run Code Online (Sandbox Code Playgroud)
我想以交互方式做的事情:
library(ggplot2)
library(dplyr)
df1 <- filter (df, web1 == "Yes")
ggplot(df1)+
aes(x=gender, y=popWeight/sum(popWeight))+
stat_summary(fun.y = sum, geom = "bar")+
scale_y_continuous("Population (%)", labels = scales::percent)
Run Code Online (Sandbox Code Playgroud)
我试过的
library(shiny)
library(ggplot2)
library(dplyr)
ui <- fluidPage(
selectInput(inputId = "WebsiteName", label = "Choose a Website", choices = names(df) [c(3:7)]),
plotOutput("Gender")
)
server <- function(input, output) {
dfInput <- reactive({
df %>% filter (input$WebsiteName == "Yes")
})
output$Gender <- renderPlot({
df1 <- dfInput()
ggplot(df1)+
aes(x=gender, y=popWeight/sum(popWeight))+
stat_summary(fun.y = sum, geom = "bar")+
scale_y_continuous("Population (%)", labels = scales::percent)
})
}
shinyApp(ui = ui, server = server)
Run Code Online (Sandbox Code Playgroud)
有没有办法改变过滤器变量而不是值?我也愿意接受其他解决方案。
您可以tidy使用数据集以更有用的方式转换它,并为自己省去一些麻烦:
df<- df %>%
gather(web, value, -age, -gender, -popWeight)
Run Code Online (Sandbox Code Playgroud)
改变了selectInput选择
ui <- fluidPage(
selectInput(inputId = "websiteName",
label = "Choose a Website",
choices = unique(df$web)),
plotOutput("Gender")
)
Run Code Online (Sandbox Code Playgroud)
更新了反应式表达
server <- function(input, output) {
dfInput <- reactive({
df %>% filter(web == input$websiteName & value == "Yes")
})
output$Gender <- renderPlot({
df1 <- dfInput()
ggplot(df1) +
aes(x = gender, y = popWeight / sum(popWeight)) +
stat_summary(fun.y = sum, geom = "bar") +
scale_y_continuous("Population (%)", labels = scales::percent)
})
}
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
7671 次 |
| 最近记录: |