Dan*_*Cee 3 plot r circos circlize
我有一个数据框,具有 4 组患者和细胞类型之间的共同特征。我有很多不同的功能,但共享的功能(存在于多个组中)只是其中几个。
我想制作一个马戏团图,反映不同组患者和细胞类型之间的共享特征之间的联系,同时给出每组中有多少不共享特征的想法。
在我看来,它应该是一个由 4 个部分组成的图(每组患者和细胞类型一个),它们之间有一些联系。每个扇区的大小应该反映组中特征的总数,并且该区域的大部分不应该与其他组连接,而是空的。
这是我到目前为止所拥有的,但我不希望部门专门针对每个功能,而只针对每组患者和细胞类型。
微量元素:
library(circlize)
patients <- c(rep("patient1",20), rep("patient2",10))
cell.types <- c(rep("cell1",12), rep("cell2",8),rep("cell1",6), rep("cell2",4))
features <- c(paste("feature",1:12,sep="_"), paste("feature",9:16,sep="_"), paste("feature",c(1,2,9,10,17,18),sep="_"), paste("feature",c(1,18,19,20),sep="_"))
dat <- data.frame(patient=patients, cell.type=cell.types, feature=features)
dat
dat <- with(dat, table(paste(patient,cell.type,sep='|'), feature))
dat
chordDiagram(as.data.frame(dat), transparency = 0.5)
Run Code Online (Sandbox Code Playgroud)
编辑!!
@m-dz 在他的答案中显示的实际上是我正在寻找的格式,4 个不同的病人/细胞类型组合的 4 个扇区,仅显示连接,而非连接的特征虽然没有显示,但应该考虑在内该部门的规模。
然而,我意识到我遇到的情况比上面 MWE 中的情况更复杂。
一个特征被认为出现在 2 个患者/细胞类型组中,不仅当它在 2 个组中相同时,而且当它相似时......(序列同一性高于阈值)。这样一来,我就裁员了……
患者 1-细胞 1 中的特征 A 可以连接到患者 2-细胞 1 中的特征 A,也可以连接到特征 B...对于患者 1-细胞 1,特征 A 只能计数一次(唯一计数),并扩展到患者 2- 中的 2 个不同特征细胞1。
请参阅下面的示例,更准确地了解我的实际数据,并看看使用此示例是否可以获得最终的 circos 图!谢谢!!
##MWE
#NON OVERLAPPING SETS!
#1: non-shared features
nonshared <- data.frame(patient=c(rep("pat1",20), rep("pat2",10)), cell.type=c(rep("cell1",12), rep("cell2",8),rep("cell1",6), rep("cell2",4)), feature=paste("a",1:30,sep=''))
nonshared
#2: features shared between cell types within same patient
sharedcells <- data.frame(patient=c(rep("pat1",3), rep("pat2",4)), cell.types=c(rep("cell1||cell2",3),rep("cell1||cell2",4)), features=c("b1||b1","b1||b1","b1||b1","b2||b2","b3||b3","b4||b4","b4||b5"))
sharedcells
#3: features shared between patients within same cell types
sharedpats <- data.frame(patients=c(rep("pat1||pat2",2), rep("pat1||pat2",6)), cell.type=c(rep("cell1",2),rep("cell2",6)), features=c("c1||c1","c2||c1","c3||c3","c3||c4","c3||c5","c6||c5","c7||c7","c8||c8"))
sharedpats
#4: features shared between patients and cell types
#4.1: shared across pat1-cell1, pat1-cell2, pat2-cell1, pat2-cell2
sharedall1 <- data.frame(both=c(rep("pat1-cell1||pat1-cell2||pat2-cell1||pat2-cell2",4)), features=c("d1||d1||d1||d1","d2||d2||d2||d3","d4||d4||d3||d3","d5||d5||d5||d5"))
#4.2: shared across pat1-cell1, pat1-cell2, pat2-cell1
sharedall2 <- data.frame(both=c(rep("pat1-cell1||pat1-cell2||pat2-cell1",2)), features=c("d6||d6||d6","d7||d7||d7"))
#4.3: shared across pat1-cell1, pat1-cell2, pat2-cell2
sharedall3 <- data.frame(both="pat1-cell1||pat1-cell2||pat2-cell2", features="d8||d8||d9")
#4.4: shared across pat1-cell1, pat2-cell1, pat2-cell2
sharedall4 <- data.frame(both="pat1-cell1||pat2-cell1||pat2-cell2", features="d10||d10||d9")
#4.5: shared across pat1-cell2, pat2-cell1, pat2-cell2
sharedall5 <- data.frame(both=c(rep("pat1-cell2||pat2-cell1||pat2-cell2",3)), features=c("d11||d11||d11","d12||d13||d13","d12||d14||d14"))
#4.6: shared across pat1-cell1, pat2-cell2
sharedall6 <- data.frame()
#4.7: shared across pat1-cell2, pat2-cell1
sharedall7 <- data.frame(both=c(rep("pat1-cell2||pat2-cell1",2)), features=c("d15||d16","d17||d17"))
sharedall <- rbind(sharedall1, sharedall2, sharedall3, sharedall4, sharedall5, sharedall6, sharedall7)
sharedall
#you see there might be overlaps between the different subsets of sharedall, but not between sharedall, sharedparts, sharedcells, and nonshared
#I NEED A CIRCOS PLOT THAT SHOWS ALL THE CONNECTIONS. THE NON-CONNECTED (nonshared) FEATURES SHOULD NOT BE SHOWN, BUT THE SHOULD COUNT TO THE SIZE OF THE SECTOR (CORRESPONDING TO A PATIENT-CELL COMBINATION)
#THE FEATURES SHOULD BE COUNT UNIQUELY, SO IF THERE ARE ENTRIES LIKE:
#3 pat1||pat2 cell2 c3||c3
#4 pat1||pat2 cell2 c3||c4
#5 pat1||pat2 cell2 c3||c5
#THE FEATURE c3 SHOULD BE COUNT ONCE FOR pat1, AND EXPAND TO 3 DIFFERENT FEATURES IN pat2
Run Code Online (Sandbox Code Playgroud)
关于预期结果的旁注:目的是创建一个图,简单地显示共享的特征量,忽略单个特征(下面的第一个图)或共享特征重叠(例如,在第二个图上,看起来相同的特征在所有特征之间共享)组,从第一个图来看,这不是真的,但这里重要的是组之间共享特征的比率)。
下面的代码产生以下两张图(左图1供参考):
所有个性化功能
独特和共享功能的简单计数
其中之一应该符合预期。
# Prep. data --------------------------------------------------------------
nonshared <- data.frame(patient=c(rep("pat1",20), rep("pat2",10)), cell.type=c(rep("cell1",12), rep("cell2",8),rep("cell1",6), rep("cell2",4)), feature=paste("a",1:30,sep=''))
sharedcells <- data.frame(patient=c(rep("pat1",3), rep("pat2",4)), cell.types=c(rep("cell1||cell2",3),rep("cell1||cell2",4)), features=c("b1||b1","b1||b1","b1||b1","b2||b2","b3||b3","b4||b4","b4||b5"))
sharedpats <- data.frame(patients=c(rep("pat1||pat2",2), rep("pat1||pat2",6)), cell.type=c(rep("cell1",2),rep("cell2",6)), features=c("c1||c1","c2||c1","c3||c3","c3||c4","c3||c5","c6||c5","c7||c7","c8||c8"))
sharedall1 <- data.frame(both=c(rep("pat1-cell1||pat1-cell2||pat2-cell1||pat2-cell2",4)), features=c("d1||d1||d1||d1","d2||d2||d2||d3","d4||d4||d3||d3","d5||d5||d5||d5"))
sharedall2 <- data.frame(both=c(rep("pat1-cell1||pat1-cell2||pat2-cell1",2)), features=c("d6||d6||d6","d7||d7||d7"))
sharedall3 <- data.frame(both="pat1-cell1||pat1-cell2||pat2-cell2", features="d8||d8||d9")
sharedall4 <- data.frame(both="pat1-cell1||pat2-cell1||pat2-cell2", features="d10||d10||d9")
sharedall5 <- data.frame(both=c(rep("pat1-cell2||pat2-cell1||pat2-cell2",3)), features=c("d11||d11||d11","d12||d13||d13","d12||d14||d14"))
sharedall6 <- data.frame()
sharedall7 <- data.frame(both=c(rep("pat1-cell2||pat2-cell1",2)), features=c("d15||d16","d17||d17"))
sharedall <- rbind(sharedall1, sharedall2, sharedall3, sharedall4, sharedall5, sharedall6, sharedall7)
#I NEED A CIRCOS PLOT THAT SHOWS ALL THE CONNECTIONS. THE NON-CONNECTED (nonshared) FEATURES SHOULD NOT BE SHOWN, BUT THE SHOULD COUNT TO THE SIZE OF THE SECTOR (CORRESPONDING TO A PATIENT-CELL COMBINATION)
#THE FEATURES SHOULD BE COUNT UNIQUELY, SO IF THERE ARE ENTRIES LIKE:
#3 pat1||pat2 cell2 c3||c3
#4 pat1||pat2 cell2 c3||c4
#5 pat1||pat2 cell2 c3||c5
#THE FEATURE c3 SHOULD BE COUNT ONCE FOR pat1, AND EXPAND TO 3 DIFFERENT FEATURES IN pat2
# Start -------------------------------------------------------------------
library(circlize)
library(data.table)
library(magrittr)
library(stringr)
library(RColorBrewer)
# Split and pad with 0 ----------------------------------------------------
fun <- function(x) unlist(tstrsplit(x, split = '||', fixed = TRUE))
nonshared %>% setDT()
sharedcells %>% setDT()
sharedpats %>% setDT()
sharedall %>% setDT()
nonshared <- nonshared[, .(group = paste(patient, cell.type, sep = '-'), feature)][, feature := paste0('a', str_pad(str_extract(feature, '[0-9]+'), 2, 'left', '0'))]
sharedcells <- sharedcells[, lapply(.SD, fun), by = 1:nrow(sharedcells)][, .(group = paste(patient, cell.types, sep = '-'), feature = features)][, feature := paste0('b', str_pad(str_extract(feature, '[0-9]+'), 2, 'left', '0'))]
sharedpats <- sharedpats[, lapply(.SD, fun), by = 1:nrow(sharedpats)][, .(group = paste(patients, cell.type, sep = '-'), feature = features)][, feature := paste0('c', str_pad(str_extract(feature, '[0-9]+'), 2, 'left', '0'))]
sharedall <- sharedall[, lapply(.SD, fun), by = 1:nrow(sharedall)][, .(group = both, feature = features)][, feature := paste0('d', str_pad(str_extract(feature, '[0-9]+'), 2, 'left', '0'))]
dt_split <- rbindlist(
list(
nonshared,
sharedcells,
sharedpats,
sharedall
)
)
# Set key and self join to find shared features ---------------------------
setkey(dt_split, feature)
dt_join <- dt_split[dt_split, .(group, i.group, feature), allow.cartesian = TRUE] %>%
.[group != i.group, ]
# Create a "sorted key" ---------------------------------------------------
# key := paste(sort(.SD)...
# To leave only unique combinations of groups and features
dt_join <-
dt_join[,
key := paste(sort(.SD), collapse = '|'),
by = 1:nrow(dt_join),
.SDcols = c('group', 'i.group')
] %>%
setorder(feature, key) %>%
unique(by = c('key', 'feature')) %>%
.[, .(
group_from = i.group,
group_to = group,
feature = feature)]
# Rename and key ----------------------------------------------------------
dt_split %>% setnames(old = 'group', new = 'group_from') %>% setkey(group_from, feature)
dt_join %>% setkey(group_from, feature)
# Individual features -----------------------------------------------------
# Features without connections --------------------------------------------
dt_singles <- dt_split[, .(group_from, group_to = group_from, feature)] %>%
.[, N := .N, by = feature] %>%
.[!(N > 1 & group_from == group_to), !c('N')]
# Bind all, add some columns etc. -----------------------------------------
dt_bind <- rbind(dt_singles, dt_join) %>% setorder(group_from, feature, group_to)
dt_bind[, ':='(
group_from_f = paste(group_from, feature, sep = '.'),
group_to_f = paste(group_to, feature, sep = '.'))]
dt_bind[, feature := NULL] # feature can be removed
# Colour
dt_bind[, colour := ifelse(group_from_f == group_to_f, "#FFFFFF00", '#00000050')] # Change first to #FF0000FF to show red blobs
# Prep. sectors -----------------------------------------------------------
sectors_f <- union(dt_bind[, group_from_f], dt_bind[, group_to_f]) %>% sort()
colour_lookup <-
union(dt_bind[, group_from], dt_bind[, group_to]) %>% sort() %>%
structure(seq_along(.) + 1, names = .)
sector_colours <- str_replace_all(sectors_f, '.[a-d][0-9]+', '') %>%
colour_lookup[.]
# Gaps between sectors ----------------------------------------------------
gap_sizes <- c(0.0, 1.0)
gap_degree <-
sapply(table(names(sector_colours)), function(i) c(rep(gap_sizes[1], i-1), gap_sizes[2])) %>%
unlist() %>% unname()
# gap_degree <- rep(0, length(sectors_f)) # Or no gap
# Plot! -------------------------------------------------------------------
# Each "sector" is a separate patient/cell/feature combination
circos.par(gap.degree = gap_degree)
circos.initialize(sectors_f, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1), track.height = 0.05, bg.col = sector_colours, bg.border = NA)
for(i in 1:nrow(dt_bind)) {
row_i <- dt_bind[i, ]
circos.link(
row_i[['group_from_f']], c(0, 1),
row_i[['group_to_f']], c(0, 1),
border = NA, col = row_i[['colour']]
)
}
# "Feature" labels
circos.trackPlotRegion(track.index = 2, ylim = c(0, 1), panel.fun = function(x, y) {
sector.index = get.cell.meta.data("sector.index")
circos.text(0.5, 0.25, sector.index, col = "white", cex = 0.6, facing = "clockwise", niceFacing = TRUE)
}, bg.border = NA)
# "Patient/cell" labels
for(s in names(colour_lookup)) {
sectors <- sectors_f %>% { .[str_detect(., s)] }
highlight.sector(
sector.index = sectors, track.index = 1, col = colour_lookup[s],
text = s, text.vjust = -1, niceFacing = TRUE)
}
circos.clear()
# counts of unique and shared features ------------------------------------
xlims <- dt_split[, .N, by = group_from][, .(x_from = 0, x_to = N)] %>% as.matrix()
links <- dt_join[, .N, by = .(group_from, group_to)]
colours <- dt_split[, unique(group_from)] %>% structure(seq_along(.) + 1, names = .)
library(circlize)
sectors = names(colours)
circos.par(cell.padding = c(0, 0, 0, 0))
circos.initialize(sectors, xlim = xlims)
circos.trackPlotRegion(ylim = c(0, 1), track.height = 0.05, bg.col = colours, bg.border = NA)
for(i in 1:nrow(links)) {
link <- links[i, ]
circos.link(link[[1]], c(0, link[[3]]), link[[2]], c(0, link[[3]]), col = '#00000025', border = NA)
}
# "Patient/cell" labels
for(s in sectors) {
highlight.sector(
sector.index = s, track.index = 1, col = colours[s],
text = s, text.vjust = -1, niceFacing = TRUE)
}
circos.clear()
Run Code Online (Sandbox Code Playgroud)
编辑:只需添加已删除评论中的链接:请参阅此答案以获取标签的一个很好的示例!