如何解压缩Spark DataSet中的多个键

Alb*_*nto 4 scala apache-spark apache-spark-dataset

我有以下内容DataSet,具有以下结构。

case class Person(age: Int, gender: String, salary: Double)
Run Code Online (Sandbox Code Playgroud)

我想通过和来确定平均工资,因此我将这两个关键字归为一组。我遇到了两个主要问题,一个是两个键混合在一个键中,但我想将它们放在两个不同的列中,另一个是该列的名称很傻,我不知道该怎么做。使用将该文件重命名(显然,将不起作用)。genderageDSaggregatedasaliasDS API

val df = sc.parallelize(List(Person(100000.00, "male", 27), 
  Person(120000.00, "male", 27), 
  Person(95000, "male", 26),
  Person(89000, "female", 31),
  Person(250000, "female", 51),
  Person(120000, "female", 51)
)).toDF.as[Person]

df.groupByKey(p => (p.gender, p.age)).agg(typed.avg(_.salary)).show()

+-----------+------------------------------------------------------------------------------------------------+
|        key| TypedAverage(line2503618a50834b67a4b132d1b8d2310b12.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$Person)|          
+-----------+------------------------------------------------------------------------------------------------+ 
|[female,31]|  89000.0... 
|[female,51]| 185000.0...
|  [male,27]| 110000.0...
|  [male,26]|  95000.0...
+-----------+------------------------------------------------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)

Jus*_*ony 6

混叠是一个无类型的操作,因此您必须在以后重新键入它。而解开密钥的唯一方法是在之后通过选择或其他方式进行:

df.groupByKey(p => (p.gender, p.age))
  .agg(typed.avg[Person](_.salary).as("average_salary").as[Double])
  .select($"key._1",$"key._2",$"average_salary").show
Run Code Online (Sandbox Code Playgroud)


Vla*_*rin 6

实现这两个目标的最简单方法是再次map()从聚合结果到Person实例:

.map{case ((gender, age), salary) => Person(gender, age, salary)}
Run Code Online (Sandbox Code Playgroud)

如果稍微重新排列案例类的构造函数中的参数顺序,结果将看起来最好:

case class Person(gender: String, age: Int, salary: Double)
Run Code Online (Sandbox Code Playgroud)
+------+---+--------+
|gender|age|  salary|
+------+---+--------+
|female| 31| 89000.0|
|female| 51|185000.0|
|  male| 27|110000.0|
|  male| 26| 95000.0|
+------+---+--------+
Run Code Online (Sandbox Code Playgroud)

完整代码:

import session.implicits._
val df = session.sparkContext.parallelize(List(
  Person("male", 27, 100000),
  Person("male", 27, 120000),
  Person("male", 26, 95000),
  Person("female", 31, 89000),
  Person("female", 51, 250000),
  Person("female", 51, 120000)
)).toDS

import org.apache.spark.sql.expressions.scalalang.typed
df.groupByKey(p => (p.gender, p.age))
  .agg(typed.avg(_.salary))
  .map{case ((gender, age), salary) => Person(gender, age, salary)}
  .show()
Run Code Online (Sandbox Code Playgroud)