Rad*_*duS 3 performance numpy vectorization pandas
如何制作以下MAD功能的滚动版本
from numpy import mean, absolute
def mad(data, axis=None):
return mean(absolute(data - mean(data, axis)), axis)
Run Code Online (Sandbox Code Playgroud)
这段代码是这个问题的答案
目前我将numpy转换为pandas然后应用此函数,然后将结果转换回numpy
pandasDataFrame.rolling(window=90).apply(mad)
Run Code Online (Sandbox Code Playgroud)
但是对于较大的数据帧,这是低效的.如何在没有循环的情况下获得numpy中相同函数的滚动窗口并给出相同的结果?
这是一个矢量化的NumPy方法 -
# From this post : http://stackoverflow.com/a/40085052/3293881
def strided_app(a, L, S ): # Window len = L, Stride len/stepsize = S
nrows = ((a.size-L)//S)+1
n = a.strides[0]
return np.lib.stride_tricks.as_strided(a, shape=(nrows,L), strides=(S*n,n))
# From this post : http://stackoverflow.com/a/14314054/3293881 by @Jaime
def moving_average(a, n=3) :
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
def mad_numpy(a, W):
a2D = strided_app(a,W,1)
return np.absolute(a2D - moving_average(a,W)[:,None]).mean(1)
Run Code Online (Sandbox Code Playgroud)
运行时测试 -
In [617]: data = np.random.randint(0,9,(10000))
...: df = pd.DataFrame(data)
...:
In [618]: pandas_out = pd.rolling_apply(df,90,mad).values.ravel()
In [619]: numpy_out = mad_numpy(data,90)
In [620]: np.allclose(pandas_out[89:], numpy_out) # Nans part clipped
Out[620]: True
In [621]: %timeit pd.rolling_apply(df,90,mad)
10 loops, best of 3: 111 ms per loop
In [622]: %timeit mad_numpy(data,90)
100 loops, best of 3: 3.4 ms per loop
In [623]: 111/3.4
Out[623]: 32.64705882352941
Run Code Online (Sandbox Code Playgroud)
32x+在那个循环的熊猫解决方案上有巨大的加速!