yen*_*eng 42 python machine-learning keras
我使用KerasClassifier来训练分类器.
代码如下:
import numpy
from pandas import read_csv
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load dataset
dataframe = read_csv("iris.csv", header=None)
dataset = dataframe.values
X = dataset[:,0:4].astype(float)
Y = dataset[:,4]
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
#print("encoded_Y")
#print(encoded_Y)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y = np_utils.to_categorical(encoded_Y)
#print("dummy_y")
#print(dummy_y)
# define baseline model
def baseline_model():
# create model
model = Sequential()
model.add(Dense(4, input_dim=4, init='normal', activation='relu'))
#model.add(Dense(4, init='normal', activation='relu'))
model.add(Dense(3, init='normal', activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
estimator = KerasClassifier(build_fn=baseline_model, nb_epoch=200, batch_size=5, verbose=0)
#global_model = baseline_model()
kfold = KFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(estimator, X, dummy_y, cv=kfold)
print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
Run Code Online (Sandbox Code Playgroud)
但如何保存最终模型以供将来预测?
我通常使用下面的代码来保存模型:
# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")
print("Saved model to disk")
Run Code Online (Sandbox Code Playgroud)
但我不知道如何将保存模型的代码插入到KerasClassifier的代码中.
谢谢.
bog*_*ron 79
该模型有一个save方法,可以保存重建模型所需的所有细节.keras文档中的一个示例:
from keras.models import load_model
model.save('my_model.h5') # creates a HDF5 file 'my_model.h5'
del model # deletes the existing model
# returns a compiled model
# identical to the previous one
model = load_model('my_model.h5')
Run Code Online (Sandbox Code Playgroud)
MMK*_*MMK 20
您可以将模型保存为json,并以hdf5文件格式加权.
# keras library import for Saving and loading model and weights
from keras.models import model_from_json
from keras.models import load_model
# serialize model to JSON
# the keras model which is trained is defined as 'model' in this example
model_json = model.to_json()
with open("model_num.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model_num.h5")
Run Code Online (Sandbox Code Playgroud)
创建文件"model_num.h5"和"model_num.json",其中包含我们的模型和权重
要使用相同的训练模型进行进一步测试,您只需加载hdf5文件并将其用于预测不同的数据.这是如何从保存的文件加载模型.
# load json and create model
json_file = open('model_num.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("model_num.h5")
print("Loaded model from disk")
loaded_model.save('model_num.hdf5')
loaded_model=load_model('model_num.hdf5')
Run Code Online (Sandbox Code Playgroud)
要预测不同的数据,您可以使用它
loaded_model.predict_classes("your_test_data here")
Run Code Online (Sandbox Code Playgroud)
您可以model.save(filepath)用来将Keras模型保存到单个HDF5文件中,该文件包含:
在您的Python代码中,最后一行可能是:
model.save("m.hdf5")
Run Code Online (Sandbox Code Playgroud)
这使您可以将模型的整个状态保存在单个文件中。可以通过重新实例化保存的模型keras.models.load_model()。
返回的模型load_model()是准备使用的已编译模型(除非从不首先编译保存的模型)。
model.save() 参数:
您可以通过这种方式保存模型并加载。
from keras.models import Sequential, load_model
from keras_contrib.losses import import crf_loss
from keras_contrib.metrics import crf_viterbi_accuracy
# To save model
model.save('my_model_01.hdf5')
# To load the model
custom_objects={'CRF': CRF,'crf_loss':crf_loss,'crf_viterbi_accuracy':crf_viterbi_accuracy}
# To load a persisted model that uses the CRF layer
model1 = load_model("/home/abc/my_model_01.hdf5", custom_objects = custom_objects)
Run Code Online (Sandbox Code Playgroud)
小智 7
通常,我们通过调用save()函数将模型和权重保存在同一个文件中。
为了节省,
model.compile(optimizer='adam',
loss = 'categorical_crossentropy',
metrics = ["accuracy"])
model.fit(X_train, Y_train,
batch_size = 32,
epochs= 10,
verbose = 2,
validation_data=(X_test, Y_test))
#here I have use filename as "my_model", you can choose whatever you want to.
model.save("my_model.h5") #using h5 extension
print("model saved!!!")
Run Code Online (Sandbox Code Playgroud)
对于加载模型,
from keras.models import load_model
model = load_model('my_model.h5')
model.summary()
Run Code Online (Sandbox Code Playgroud)
在这种情况下,我们可以简单地保存和加载模型,而无需再次重新编译我们的模型。注意 - 这是保存和加载 Keras 模型的首选方式。
| 归档时间: |
|
| 查看次数: |
68684 次 |
| 最近记录: |