tod*_*ysm 2 apache-spark apache-spark-sql pyspark spark-dataframe
所以,我们有点困惑。在Jupyter Notebook中,我们具有以下数据框:
+--------------------+--------------+-------------+--------------------+--------+-------------------+
| created_at|created_at_int| screen_name| hashtags|ht_count| single_hashtag|
+--------------------+--------------+-------------+--------------------+--------+-------------------+
|2017-03-05 00:00:...| 1488672001| texanraj| [containers, cool]| 1| containers|
|2017-03-05 00:00:...| 1488672001| texanraj| [containers, cool]| 1| cool|
|2017-03-05 00:00:...| 1488672002| hubskihose|[automation, future]| 1| automation|
|2017-03-05 00:00:...| 1488672002| hubskihose|[automation, future]| 1| future|
|2017-03-05 00:00:...| 1488672002| IBMDevOps| [DevOps]| 1| devops|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana|[VoiceOfWipro, Cl...| 1| voiceofwipro|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana|[VoiceOfWipro, Cl...| 1| cloud|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana|[VoiceOfWipro, Cl...| 1| leader|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana| [Cloud, Cloud]| 1| cloud|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana| [Cloud, Cloud]| 1| cloud|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| voiceofwipro|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| cloud|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1|managedfiletransfer|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| asaservice|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| interconnect2017|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| hmi|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1| cloud|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1|managedfiletransfer|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1| asaservice|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1| interconnect2017|
+--------------------+--------------+-------------+--------------------+--------+-------------------+
only showing top 20 rows
root
|-- created_at: timestamp (nullable = true)
|-- created_at_int: integer (nullable = true)
|-- screen_name: string (nullable = true)
|-- hashtags: array (nullable = true)
| |-- element: string (containsNull = true)
|-- ht_count: integer (nullable = true)
|-- single_hashtag: string (nullable = true)
Run Code Online (Sandbox Code Playgroud)
我们正在尝试获取每小时的主题标签计数。我们采用的方法是使用Window进行分区single_hashtag。像这样:
# create WindowSpec
hashtags_24_winspec = Window.partitionBy(hashtags_24.single_hashtag). \
orderBy(hashtags_24.created_at_int).rangeBetween(-3600, 3600)
Run Code Online (Sandbox Code Playgroud)
但是,当我们尝试ht_count使用以下方法求和时:
#sum_count_over_time = sum(hashtags_24.ht_count).over(hashtags_24_winspec)
Run Code Online (Sandbox Code Playgroud)
我们得到以下错误:
Column is not iterable
Traceback (most recent call last):
File "/usr/hdp/current/spark2-client/python/pyspark/sql/column.py", line 240, in __iter__
raise TypeError("Column is not iterable")
TypeError: Column is not iterable
Run Code Online (Sandbox Code Playgroud)
错误消息不是很有用,我们很困惑,确切地调查了哪一列。有任何想法吗?
小智 5
您使用的是错误的sum:
from pyspark.sql.functions import sum
sum_count_over_time = sum(hashtags_24.ht_count).over(hashtags_24_winspec)
Run Code Online (Sandbox Code Playgroud)
实际上,您可能需要别名或包导入:
from pyspark.sql.functions import sum as sql_sum
# or
from pyspark.sql.functions as F
F.sum(...)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
5245 次 |
| 最近记录: |