Bra*_*n J 2 python matplotlib histogram fig
我试图plt.fig()在 Python 中使用其各自的直方图以相等的比例并排绘制图像,但我没有得到所需的输出。相反,我将直方图重叠到图像上。
知道为什么会这样吗?
import pylab as plt
import matplotlib.image as mpimg
import numpy as np
img = np.uint8(mpimg.imread('motherT.png'))
im2 = np.uint8(mpimg.imread('waldo.png'))
# convert to grayscale
# do for individual channels R, G, B, A for nongrayscale images
img = np.uint8((0.2126* img[:,:,0]) + \
np.uint8(0.7152 * img[:,:,1]) +\
np.uint8(0.0722 * img[:,:,2]))
im2 = np.uint8((0.2126* img[:,:,0]) + \
np.uint8(0.7152 * img[:,:,1]) +\
np.uint8(0.0722 * img[:,:,2]))
# show old and new image
# show original image
fig = plt.figure()
plt.imshow(img)
plt.title(' image 1')
plt.set_cmap('gray')
# show original image
fig.add_subplot(221)
plt.title('histogram ')
plt.hist(img,10)
plt.show()
fig = plt.figure()
plt.imshow(im2)
plt.title(' image 2')
plt.set_cmap('gray')
fig.add_subplot(221)
plt.title('histogram')
plt.hist(im2,10)
plt.show()
Run Code Online (Sandbox Code Playgroud)
您似乎是为两张图片执行此操作?子图将是你最好的选择。下面向您展示如何使用它们来实现2 x 2效果:
import pylab as plt
import matplotlib.image as mpimg
import numpy as np
img = np.uint8(mpimg.imread('motherT.png'))
im2 = np.uint8(mpimg.imread('waldo.png'))
# convert to grayscale
# do for individual channels R, G, B, A for nongrayscale images
img = np.uint8((0.2126 * img[:,:,0]) + np.uint8(0.7152 * img[:,:,1]) + np.uint8(0.0722 * img[:,:,2]))
im2 = np.uint8((0.2126 * im2[:,:,0]) + np.uint8(0.7152 * im2[:,:,1]) + np.uint8(0.0722 * im2[:,:,2]))
# show old and new image
# show original image
fig = plt.figure()
# show original image
fig.add_subplot(221)
plt.title(' image 1')
plt.set_cmap('gray')
plt.imshow(img)
fig.add_subplot(222)
plt.title('histogram ')
plt.hist(img,10)
fig.add_subplot(223)
plt.title(' image 2')
plt.set_cmap('gray')
plt.imshow(im2)
fig.add_subplot(224)
plt.title('histogram')
plt.hist(im2,10)
plt.show()
Run Code Online (Sandbox Code Playgroud)
这会给你类似的东西:
另请注意,在您的原始代码中,您的灰度计算im2使用的是imgnot的图像数据im2。
您可能希望为每个图像关闭轴,为此您可以plt.axis('off')在每个图像之前添加plt.imshow():