bre*_*mri 2 oracle performance sqlalchemy dataframe pandas
使用pandas dataframe的to_sql方法,我可以很容易地将少量行写入oracle数据库中的表:
from sqlalchemy import create_engine
import cx_Oracle
dsn_tns = "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<host>)(PORT=1521))\
(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=<servicename>)))"
pwd = input('Please type in password:')
engine = create_engine('oracle+cx_oracle://myusername:' + pwd + '@%s' % dsn_tns)
df.to_sql('test_table', engine.connect(), if_exists='replace')
Run Code Online (Sandbox Code Playgroud)
但是对于任何常规大小的数据帧(我的有60k行,不是那么大),代码变得无法使用,因为它在我愿意等待的时间内(从而超过10分钟)从未完成.我用Google搜索并搜索了几次,最接近的解决方案是ansonw在这个问题中给出的答案.但那个是关于mysql,而不是oracle.正如Ziggy Eunicien指出的那样,它对甲骨文不起作用.有任何想法吗?
编辑
以下是数据框中的行示例:
id name premium created_date init_p term_number uprate value score group action_reason
160442353 LDP: Review 1295.619617 2014-01-20 1130.75 1 7 -42 236.328243 6 pass
164623435 TRU: Referral 453.224880 2014-05-20 0.00 11 NaN -55 38.783290 1 suppress
Run Code Online (Sandbox Code Playgroud)
这是df的数据类型:
id int64
name object
premium float64
created_date object
init_p float64
term_number float64
uprate float64
value float64
score float64
group int64
action_reason object
Run Code Online (Sandbox Code Playgroud)
Max*_*axU 14
熊猫+ SQLAlchemy的每默认情况下所有保存object(串)的列CLOB Oracle数据库中,这使得插入极其缓慢.
以下是一些测试:
import pandas as pd
import cx_Oracle
from sqlalchemy import types, create_engine
#######################################################
### DB connection strings config
#######################################################
tns = """
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = my-db-scan)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = my_service_name)
)
)
"""
usr = "test"
pwd = "my_oracle_password"
engine = create_engine('oracle+cx_oracle://%s:%s@%s' % (usr, pwd, tns))
# sample DF [shape: `(2000, 11)`]
# i took your 2 rows DF and replicated it: `df = pd.concat([df]* 10**3, ignore_index=True)`
df = pd.read_csv('/path/to/file.csv')
Run Code Online (Sandbox Code Playgroud)
DF信息:
In [61]: df.shape
Out[61]: (2000, 11)
In [62]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 11 columns):
id 2000 non-null int64
name 2000 non-null object
premium 2000 non-null float64
created_date 2000 non-null datetime64[ns]
init_p 2000 non-null float64
term_number 2000 non-null int64
uprate 1000 non-null float64
value 2000 non-null int64
score 2000 non-null float64
group 2000 non-null int64
action_reason 2000 non-null object
dtypes: datetime64[ns](1), float64(4), int64(4), object(2)
memory usage: 172.0+ KB
Run Code Online (Sandbox Code Playgroud)
我们来看看将它存储到Oracle DB需要多长时间:
In [57]: df.shape
Out[57]: (2000, 11)
In [58]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace')
1 loop, best of 1: 16 s per loop
Run Code Online (Sandbox Code Playgroud)
在Oracle DB中(注意CLOB):
AAA> desc test.test_table
Name Null? Type
------------------------------- -------- ------------------
ID NUMBER(19)
NAME CLOB # !!!
PREMIUM FLOAT(126)
CREATED_DATE DATE
INIT_P FLOAT(126)
TERM_NUMBER NUMBER(19)
UPRATE FLOAT(126)
VALUE NUMBER(19)
SCORE FLOAT(126)
group NUMBER(19)
ACTION_REASON CLOB # !!!
Run Code Online (Sandbox Code Playgroud)
现在让我们指示pandas将所有object列保存为VARCHAR数据类型:
In [59]: dtyp = {c:types.VARCHAR(df[c].str.len().max())
...: for c in df.columns[df.dtypes == 'object'].tolist()}
...:
In [60]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace', dtype=dtyp)
1 loop, best of 1: 335 ms per loop
Run Code Online (Sandbox Code Playgroud)
这次是约.快了48倍
签入Oracle DB:
AAA> desc test.test_table
Name Null? Type
----------------------------- -------- ---------------------
ID NUMBER(19)
NAME VARCHAR2(13 CHAR) # !!!
PREMIUM FLOAT(126)
CREATED_DATE DATE
INIT_P FLOAT(126)
TERM_NUMBER NUMBER(19)
UPRATE FLOAT(126)
VALUE NUMBER(19)
SCORE FLOAT(126)
group NUMBER(19)
ACTION_REASON VARCHAR2(8 CHAR) # !!!
Run Code Online (Sandbox Code Playgroud)
让我们用200.000行DF测试它:
In [69]: df.shape
Out[69]: (200000, 11)
In [70]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace', dtype=dtyp, chunksize=10**4)
1 loop, best of 1: 4.68 s per loop
Run Code Online (Sandbox Code Playgroud)
在我的测试(不是最快的)环境中,200K行DF花了大约5秒钟.
结论:在将DataFrames保存到Oracle DB时,使用以下技巧以显式指定dtype的dtype所有DF列object.否则它将被保存为CLOB数据类型,这需要特殊处理并使其非常慢
dtyp = {c:types.VARCHAR(df[c].str.len().max())
for c in df.columns[df.dtypes == 'object'].tolist()}
df.to_sql(..., dtype=dtyp)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6908 次 |
| 最近记录: |